Patents Assigned to Innovatherm Prof. Dr. Leisenberg GmbH & Co. KG
  • Patent number: 9927175
    Abstract: The invention relates to a method for monitoring an operating status of an anode furnace, wherein the anode furnace is formed from a plurality of heating ducts (12) and furnace chambers, wherein the furnace chambers serve for receiving anodes and the heating ducts serve for controlling the temperature of the furnace chambers, wherein the anode furnace comprises at least one furnace unit (11) having a heating zone (18), a firing zone (19) and a cooling zone (20), wherein a suction device (15) is arranged in the heating zone and a burner device (16) is arranged in the firing zone, wherein, by means of the burner device, combustion air is heated up in the heating ducts of the firing zone, wherein, by means of the suction device, hot air is sucked out of the heating ducts of the heating zone, wherein a suction output of the suction device is determined, and wherein a pressure in the heating duct is measured, wherein a volumetric flow in the heating duct is determined from a ratio of suction output and pressure.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: March 27, 2018
    Assignee: INNOVATHERM PROF. DR. LEISENBERG GMBH + CO. KG
    Inventors: Hans-Peter Mnikoleiski, Detlef Maiwald, Wolfgang Uhrig, Frank Heinke, Domenico Di Lisa, Andreas Himmelreich
  • Patent number: 9714791
    Abstract: A method and to a control device 10 for operating an anode furnace including an extraction ramp arranged in a section of a heat-up zone and a burner ramp arranged in a section of a firing zone of the furnace unit, wherein operation of ramps is controlled by means of a control device of the furnace unit, wherein the ramps each have a read unit, wherein the section each have at least one stationary transponder unit, wherein the read units of the ramps communicate with the transponder units of the sections in which the ramps are arranged, wherein the respective transponder units are identified by means of the control device, and wherein a respective position of the ramps is determined by allocating the ramps to the respective transponder units.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: July 25, 2017
    Assignee: INNOVATHERM PROF. DR. LEISENBERG GMBH + CO. KG
    Inventors: Peter Krieg, Hans-Jörg Seifert, Andreas Himmelreich, Frank Heinke, Detlef Maiwald
  • Patent number: 9328960
    Abstract: An air feeding device for producing anodes in an annular kiln includes at least one kiln unit having a heating zone, a firing zone, and a cooling zone, each having a plurality of kiln chambers which are interconnected by heating channels, are formed as heat exchangers and are used to receive anodes. Primary air is introduced into the cooling zone by a primary air feeding device for the passage of air through the kiln unit and, once it has passed through the firing zone, being discharged from the heating zone as flue gas by means of an exhaust device. Secondary air is fed into the heating zone upstream of the exhaust device by a secondary air feeding device.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: May 3, 2016
    Assignee: INNOVATHERM PROF. DR. LEISENBERG GMBH+CO. KG
    Inventors: Domenico Di Lisa, Frank Heinke, Peter Krieg, Detlef Maiwald, Hans-Peter Mnikoleiski, Wolfgang Uhrig
  • Patent number: 8684598
    Abstract: A thermoelement for measuring the temperature in gaseous or fluid media by means of one or more thermocouples comprising wires of different metals welded together which give off a resulting electrical voltage when heated and are configured as a measuring insert arranged in an insulating rod disposed in a heat-resistant protective tube that can be connected to a connection head, the protective tube being wholly or partially surrounded by a holding tube. To prevent a high input of heat which has an unfavourable effect on temperature measurement, the holding tube is supported against the protective tube at a radial distance from the protective tube, and a heat-resistant trace and optionally an insulating material are inserted between the protective tube and the holding tube, and the holding tube is attached to the connection head and/or the protective tube in one or both end areas and is provided with thermal insulation.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: April 1, 2014
    Assignee: innovatherm Prof. Dr. Leisenberg GmbH & Co. KG
    Inventors: Christian Hoβbach, Peter Krieg, Detlef Maiwald, Hans-Peter Mnikoleiski, Wolfgang Uhrig
  • Publication number: 20110017423
    Abstract: The invention relates to a method for heat recovery in the production of anodes in an annular anode furnace (10), comprising at least one furnace unit (‘hearth’) (11) with a heating zone (13), a hearth zone (14) and a cooling zone (15), with in each case a plurality of furnace chambers (12) which are interconnected by heating ducts (17), are formed as heat exchangers and serve for receiving the anodes, in which method, to operate the heating zone, a first partial amount of the hot air formed in the cooling zone by the heat dissipated from the anodes is directed into the heating zone by means of a first suction extraction device (23) and a second partial amount of the hot air formed in the cooling zone is directed to a further heat exchanger (27), formed independently of the annular anode furnace, by means of a second suction extraction device (21), wherein the heating up of the heat transfer medium used for operating the heat exchanger takes place primarily by means of the hot air removed from the cooling zon
    Type: Application
    Filed: September 18, 2007
    Publication date: January 27, 2011
    Applicant: INNOVATHERM Prof. Dr. Leisenberg GmbH + Co. KG
    Inventor: Wolfgang Leisenberg
  • Patent number: 6457483
    Abstract: In a fixture for ascertaining pressure losses in a pressure line (3) which can be blocked for a selectable unit of time by means of shut-off valves (11, 13), in which the consumers (4, 5) are connected to the pressure line (3) and the pressure line (3) is provided with a pressure watchdog (15), the blocked pressure line (3) can have an adjustable quantity of the enclosed pressurised medium supplied into it via a branch line (24) for a unit of time, and the pressure watchdog (15) is provided with a circuit (31) by means of which the pressure line (3) can be controlled depending on the operating status of the pressure watchdog (15). By means of this embodiment, it is possible with only a very minor scope of circuitry to test the pressure line (3) at any time or at selectable time intervals and, depending on the measurement result, to resume the supply to the consumers (4, 5) or to deactivate the pressure line (3).
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: October 1, 2002
    Assignee: Innovatherm Prof. Dr. Leisenberg GmbH & Co. KG
    Inventor: Wolfgang Uhrig
  • Patent number: 6436335
    Abstract: A method for management of an anode furnace, from which an adjustable volume of flue gas is directed into a flue system, comprises the steps of measuring the actual flue gas temperatures in flues of each section as actual temperatures, taking related set temperatures from a set temperature schedule, calculating a time integral of deviation between actual and set temperatures, modifying the actual temperature during a baking process such that the time integral is reduced to zero at the end of the process, registering at least one of the oxygen content and the fuel load in each flue, and setting burner capacity according to the set temperature and to the available oxygen content in the flue.
    Type: Grant
    Filed: April 12, 2000
    Date of Patent: August 20, 2002
    Assignee: Innovatherm Prof. Dr. Leisenberg GmbH & Co. KG
    Inventor: Wolfgang Leisenberg