Patents Assigned to Inpria Corporation
  • Patent number: 10228618
    Abstract: Organometallic precursors are described for the formation of high resolution lithography patterning coatings based on metal oxide hydroxide chemistry. The precursor compositions generally comprise ligands readily hydrolysable by water vapor or other OH source composition under modest conditions. The organometallic precursors generally comprise a radiation sensitive organo ligand to tin that can result in a coating that can be effective for high resolution patterning at relatively low radiation doses and is particularly useful for EUV patterning. The precursors compositions are readily processable under commercially suitable conditions. Solution phase processing with in situ hydrolysis or vapor based deposition can be used to form the coatings.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: March 12, 2019
    Assignee: Inpria Corporation
    Inventors: Stephen T. Meyers, Jeremy T. Anderson, Brian J. Cardineau, Joseph Burton Edson, Kai Jiang, Douglas A. Keszler, Alan J. Telecky
  • Patent number: 10025179
    Abstract: Organometallic solutions have been found to provide high resolution radiation based patterning using thin coatings. The patterning can involve irradiation of the coated surface with a selected pattern and developing the pattern with a developing agent to form the developed image. The patternable coatings may be susceptible to positive-tone patterning or negative-tone patterning based on the use of an organic developing agent or an aqueous acid or base developing agent. The radiation sensitive coatings can comprise a metal oxo/hydroxo network with organic ligands. A precursor solution can comprise an organic liquid and metal polynuclear oxo-hydroxo cations with organic ligands having metal carbon bonds and/or metal carboxylate bonds.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: July 17, 2018
    Assignee: Inpria Corporation
    Inventors: Stephen T. Meyers, Douglas A. Keszler, Kai Jiang, Jeremy T. Anderson, Andrew Grenville
  • Patent number: 9823564
    Abstract: Stabilized precursor solutions can be used to form radiation inorganic coating materials. The precursor solutions generally comprise metal suboxide cations, peroxide-based ligands and polyatomic anions. Design of the precursor solutions can be performed to achieve a high level of stability of the precursor solutions. The resulting coating materials can be designed for patterning with a selected radiation, such as ultraviolet light, x-ray radiation or electron beam radiation. The radiation patterned coating material can have a high contrast with respect to material properties, such that development of a latent image can be successful to form lines with very low line-width roughness and adjacent structures with a very small pitch.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: November 21, 2017
    Assignee: Inpria Corporation
    Inventors: Jason K. Stowers, Alan J. Telecky, Douglas A. Keszler, Andrew Grenville
  • Patent number: 9310684
    Abstract: Organometallic solutions have been found to provide high resolution radiation based patterning using thin coatings. The patterning can involve irradiation of the coated surface with a selected pattern and developing the pattern with a developing agent to form the developed image. The patternable coatings may be susceptible to positive-tone patterning or negative-tone patterning based on the use of an organic developing agent or an aqueous acid or base developing agent. The radiation sensitive coatings can comprise a metal oxo/hydroxo network with organic ligands. A precursor solution can comprise an organic liquid and metal polynuclear oxo-hydroxo cations with organic ligands having metal carbon bonds and/or metal carboxylate bonds.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: April 12, 2016
    Assignee: Inpria Corporation
    Inventors: Stephen T. Meyers, Douglas A. Keszler, Kai Jiang, Jeremy Anderson, Andrew Grenville
  • Patent number: 9281207
    Abstract: Solution processible hardmasks are described that can be formed from aqueous precursor solutions comprising polyoxometal clusters and anions, such as polyatomic anions. The solution processible metal oxide layers are generally placed under relatively thin etch resist layers to provide desired etch contrast with underlying substrates and/or antireflective properties. In some embodiments, the metal oxide hardmasks can be used along with an additional hardmask and/or antireflective layers. The metal oxide hardmasks can be etched with wet or dry etching. Desirable processing improvements can be obtained with the solution processible hardmasks.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: March 8, 2016
    Assignee: Inpria Corporation
    Inventors: Jason K. Stowers, Stephen T. Meyers, Michael Kocsis, Douglas A. Keszler, Andrew Grenville
  • Patent number: 9176377
    Abstract: Stabilized precursor solutions can be used to form radiation inorganic coating materials. The precursor solutions generally comprise metal suboxide cations, peroxide-based ligands and polyatomic anions. Design of the precursor solutions can be performed to achieve a high level of stability of the precursor solutions. The resulting coating materials can be designed for patterning with a selected radiation, such as ultraviolet light, x-ray radiation or electron beam radiation. The radiation patterned coating material can have a high contrast with respect to material properties, such that development of a latent image can be successful to form lines with very low line-width roughness and adjacent structures with a very small pitch.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: November 3, 2015
    Assignee: Inpria Corporation
    Inventors: Jason K. Stowers, Alan J. Telecky, Douglas A. Keszler, Andrew Grenville
  • Patent number: 8710497
    Abstract: An array substrate includes: a substrate; a gate line and a gate electrode on the substrate; a gate insulating layer on the gate line and the gate electrode, the gate insulating layer including a first insulator and a second insulator on the first insulator, wherein the first insulator includes an aluminum oxide material and has a first thickness, and the second insulator includes a hafnium oxide material and has a second thickness; an oxide semiconductor layer on the gate insulating layer over the gate electrode; a data line over the gate insulating layer; a source electrode and a drain electrode contacting the oxide semiconductor layer; a passivation layer on the data line, the source electrode and the drain electrode; and a pixel electrode on the passivation layer, the pixel electrode connected to a drain electrode through a drain contact hole.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: April 29, 2014
    Assignees: LG Dispay Co., Ltd, Inpria Corporation
    Inventors: Jung Han Kim, Chi-Wan Kim, Jeremy T. Anderson, Kai Jiang
  • Publication number: 20130146862
    Abstract: An array substrate includes: a substrate; a gate line and a gate electrode on the substrate; a gate insulating layer on the gate line and the gate electrode, the gate insulating layer including a first insulator and a second insulator on the first insulator, wherein the first insulator includes an aluminum oxide material and has a first thickness, and the second insulator includes a hafnium oxide material and has a second thickness; an oxide semiconductor layer on the gate insulating layer over the gate electrode; a data line over the gate insulating layer; a source electrode and a drain electrode contacting the oxide semiconductor layer; a passivation layer on the data line, the source electrode and the drain electrode; and a pixel electrode on the passivation layer, the pixel electrode connected to a drain electrode through a drain contact hole.
    Type: Application
    Filed: December 8, 2011
    Publication date: June 13, 2013
    Applicants: INPRIA CORPORATION, LG DISPLAY CO., LTD.
    Inventors: Jung Han KIM, Chi-Wan KIM, Jeremy T. ANDERSON, Kai JIANG
  • Patent number: 8415000
    Abstract: Stabilized precursor solutions can be used to form radiation inorganic coating materials. The precursor solutions generally comprise metal suboxide cations, peroxide-based ligands and polyatomic anions. Design of the precursor solutions can be performed to achieve a high level of stability of the precursor solutions. The resulting coating materials can be designed for patterning with a selected radiation, such as ultraviolet light, x-ray radiation or electron beam radiation. The radiation patterned coating material can have a high contrast with respect to material properties, such that development of a latent image can be successful to form lines with very low line-width roughness and adjacent structures with a very small pitch.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: April 9, 2013
    Assignee: Inpria Corporation
    Inventors: Jason K. Stowers, Alan J. Telecky, Douglas A. Keszler, Andrew Grenville
  • Patent number: 8366967
    Abstract: Metal chalcogenide precursor solutions are described that comprise an aqueous solvent, dissolved metal formate salts and a chalcogenide source composition. The chalcogenide source compositions can be organic compounds lacking a carbon-carbon bond. The precursors are designed to form a desired metal chalcogenide upon thermal processing into films with very low levels of contamination. Potentially contaminating elements in the precursors form gaseous or vapor by-products that escape from the vicinity of the product metal chalcogenide films.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: February 5, 2013
    Assignee: Inpria Corporation
    Inventors: Douglas A. Keszler, Bejamin L. Clark