Patents Assigned to Institute Francais du Petrole
  • Patent number: 8057773
    Abstract: The invention described herein relates to a novel process that eliminates the need for post combustion CO2 capture from fired heaters (at atmospheric pressure and in dilute phase) in a petroleum refinery to achieve environmental targets by capturing CO2 in a centralized facility and providing fuel gas low in carbon to the fired heaters. It combines the pre-combustion capture of carbon dioxide with production of a hydrogen fuel source within a refinery to drastically reduce the carbon dioxide emissions of the plant. The hydrogen fuel is utilized for the process fired heaters and the fuel quality (carbon content) can be set to meet the refinery's emissions objectives. Moreover, the carbon dioxide captured can be sequestered and/or utilized for enhanced oil recovery (EOR).
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: November 15, 2011
    Assignee: Institute Francais du Pétrole
    Inventors: James B. MacArthur, James J. Colyar
  • Patent number: 7938953
    Abstract: An improved process for heavy oil conversion and upgrading and a combined method for heavy oil conversion and vacuum gas-oil treatment are described herein. The method utilizes the creation and recycle of a separate product from the vacuum still, which is thereafter recycled back to the heavy oil conversion reactor. The result is the production of a higher quality medium gas oil product relative to the overall vacuum gas oil product which is acceptable for use in a typical vacuum gas oil treatment process. Additionally, there is a higher diesel yield selectivity from the heavy oil conversion unit.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: May 10, 2011
    Assignee: Institute Francais du Petrole
    Inventors: James J. Colyar, John Duddy
  • Patent number: 7938952
    Abstract: This invention relates to a novel integrated hydroconversion process for converting heavy atmospheric or vacuum residue feeds and also converting and reducing impurities in the vacuum gas oil liquid product. This is accomplished by utilizing two residue hydroconversion reaction stages, two vapor-liquid separators, and at least two additional distillate ebullated-bed hydrocracking/hydrotreating reaction stages to provide a high conversion rate of the residue feedstocks.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: May 10, 2011
    Assignee: Institute Francais du Petrole
    Inventors: James J. Colyar, John Duddy
  • Patent number: 7811340
    Abstract: Facility for producing synthesis gas from a solid feedstock including organic matter, said facility including means for circulating a heat-carrying solid providing the heat necessary for such production, and several stages including gasification means (Z1, Z3), intermediate separation means (Z2, Z4) for separating the effluents coming from each stage, and combustion means (Z5).
    Type: Grant
    Filed: February 24, 2004
    Date of Patent: October 12, 2010
    Assignees: Institute Francais du Petrole, Commissariat al'Energie Atomique
    Inventors: Jérôme Bayle, Eric Marty
  • Patent number: 7645376
    Abstract: A process for jointly carrying out selective hydrogenation of polyunsaturated compounds into mono unsaturated compounds contained in gasolines, and for transforming light sulphur-containing compounds into heavier compounds by reaction with unsaturated compounds, said process employing a supported catalyst comprising at least one metal from group VIB and at least one non-noble metal from group VIII used in the sulphurized form deposited on a support and having a specific composition and comprising bringing the feed into contact with the catalyst at a temperature in the range of 80° C. to 220° C. at a liquid hourly space velocity in the range of 1 h?1 to 10 h?1 and at a pressure in the range of 0.5 to 5 MPa.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: January 12, 2010
    Assignee: Institute Francais du Petrole
    Inventors: Christophe Bouchy, Florent Picard, Nathalie Marchal
  • Patent number: 7588679
    Abstract: A system for gas-solid separation and for stripping combined into a single so-called separation/stripping zone that is compact and thus contributes to the quality of the yields of the unit. This system can be applied to FCC units and makes it possible to obtain very good separation effectiveness while reducing the contact time between the gas and the solid at the same time.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: September 15, 2009
    Assignee: Institute Francais du Petrole
    Inventors: Thierry Gauthier, Jean-François Le Coz, Régis Andreux
  • Patent number: 7563743
    Abstract: This invention relates to doped catalysts on an aluminosilicate substrate with a low content of macropores and the hydrocracking/hydroconversion and hydrotreatment processes that use them. The catalyst comprises at least one hydro-dehydrogenating element that is selected from the group that is formed by the elements of group VIB and group VIII of the periodic table and a dopant in a controlled quantity that is selected from among phosphorus, boron, and silicon and a non-zeolitic substrate with a silica-alumina base that contains a quantity of more than 15% by weight and of less than or equal to 95% by weight of silica (SiO2).
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: July 21, 2009
    Assignee: Institute Francais du Petrole
    Inventors: Patrick Euzen, Alexandra Chaumonnot, Carole Bobin, Patrick Bourges, Christophe Gueret, Hugues Dulot
  • Patent number: 7534340
    Abstract: Process for the contemporaneous production of fuels and lubricating bases from synthetic paraffinic mixtures, which includes a hydrocracking step in the presence of a solid bi-functional catalyst comprising: (A) a support of an acidic nature consisting of a catalytically active porous solid, including silicon, aluminum, phosphorus and oxygen bonded to one another in such a way as to form a mixed amorphous solid characterized by an Si/Al atomic ratio of between 15 and 250, a P/Al ratio of at least 0.1, but lower than 5, a total pore volume ranging from 0.5 to 2.0 ml/g, with an average pore diameter ranging from 3 nm. to 40 nm, and a specific surface area ranging from 200 to 1000 M2/g; (B) at least one metal with a hydro-dehydrogenating activity selected from groups 6 to 10 of the periodic table of elements, dispersed on said support (A) in an amount of between 0.05 and 5% by weight with respect to the total weight of the catalyst.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: May 19, 2009
    Assignees: ENI S.p.A., Institute Francais du Petrole, Enitecnologie S.p.A.
    Inventors: Vincenzo Calemma, Cristina Flego, Luciano Cosimo Carluccio, Wallace Parker, Roberto Giardino, Giovanni Faraci
  • Patent number: 7481916
    Abstract: Process for the production of a RON isomerate that is at least equal to 80 and that contains less than 1% by weight of aromatic compounds and a fraction that for the most part contains methylcyclohexane (MCH) and optionally toluene, starting from a fraction with 7 carbon atoms.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: January 27, 2009
    Assignee: Institute Francais du Petrole
    Inventors: Paul Broutin, Dominique Casanave, Jean-François Joly, Elsa Jolimaitre
  • Patent number: 7468468
    Abstract: The invention concerns a process for separating meta-xylene from a hydrocarbon feed comprising isomers containing 8 carbon atoms, comprising: a step for bringing said feed into contact with a faujasite type zeolite adsorbant, the water content of the adsorbant being in the range 0 to 1% by weight and the adsorption temperature being from 160° C. to 180° C.; a desorption step employing a solvent selected from toluene, indane and mixtures thereof.
    Type: Grant
    Filed: August 9, 2006
    Date of Patent: December 23, 2008
    Assignee: Institute Francais du Petrole
    Inventors: Philibert Leflaive, Karin Barthelet
  • Patent number: 7452458
    Abstract: Process for treatment of a hydrocarbon feedstock that comprises a hydrocarbon-containing liquid phase and hydrogen, in which the feedstock is separated under a pressure P1 into a liquid L1 and a gas G1, that is compressed and brought into contact with a portion of L1 under a pressure P2>2×P1 to recover a liquid L2 and a hydrogen-rich gas G2; L2 is fractionated to obtain a stabilized liquid L4a that is free of LPG and lighter products, a liquid stream of LPG, and a gas stream G4 that is recycled, and in which one of gas streams: recompressed G1 and G4 is in counter-current contact with an unstabilized liquid AL that is obtained from or extracted from L1 or L2, whereby this unstabilized liquid is supercooled by at least 10° C. below its bubble point at pressure P2.
    Type: Grant
    Filed: August 2, 2005
    Date of Patent: November 18, 2008
    Assignee: Institute Francais du Petrole
    Inventors: Eric Sanchez, Béatrice Fischer
  • Patent number: 7449049
    Abstract: The raw natural gas is deacidized and dehydrated in units DA and DH. The treated gas is then purified by adsorption of the mercaptans in first enclosure A1. Part of the purified gas is heated in E1, then fed into second enclosure A2 so as to discharge the water adsorbed by the adsorbent material contained in this second enclosure. A steam-rich stream is fed into third enclosure A3 containing a mercaptan-laden adsorbent material. In A3, the mercaptans are desorbed and replaced by the steam.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: November 11, 2008
    Assignee: Institute Francais du Petrole
    Inventors: Michel Thomas, Eszter Toth, Fabrice Lecomte, Peter Meyer, Jean-Louis Ambrosino
  • Patent number: 7442264
    Abstract: The use is described, in the fabrication of apparatus and equipment used in refining and in petrochemicals (for example furnace, reactor or line elements), of a steel composition comprising: at most 0.25% C; more than 1% up to 10% Mn; 1.5% to 5% Si; at most 0.03% P; at most 0.03% S; 4% to 10% Cr; 0.5% to 2% Mo; at most 0.40% V; and at most 0.10% N; the complement to 100% being essentially iron. Steels comprising: at most 0.15% C; more than 2% up to 10% Mn; 1.5% to 5% Si; at most 0.03% P; at most 0.03% S; 4% to 10% Cr; more than 0.5% up to 2% Mo; at most 0.40% V; and at most 0.10% N; the complement to 100% being essentially iron; are themselves novel.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: October 28, 2008
    Assignee: Institute Francais du Petrole
    Inventors: Francois Ropital, Xavier Longaygue
  • Patent number: 7435768
    Abstract: The present invention relates to a formulation of a foamed cement slurry comprising in combination: at least one hydraulic binder from the group consisting of class G Portland cements, class H Portland cements, aluminous cements whose alumina content is at least above 30% by mass, sulfoaluminous cements and plasters, water whose proportion ranges between 20% and 60% by mass in relation to the mass of hydraulic binder, a foaming agent whose proportion ranges between 1% and 20% by mass in relation to the mass of hydraulic binder, the foaming agent being a hydrosoluble polymer comprising hydrophobic links, or a mixture of such polymers.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: October 14, 2008
    Assignee: Institute Francais du Petrole
    Inventors: Eric Lecolier, Annie Audibert, Alain Rivereau
  • Patent number: 7419931
    Abstract: A catalyst is described which comprises at least one zeolite with channels with openings defined by a ring having 10 oxygen atoms (10 MI), at least one zeolite with at least channels or side pockets with openings defined by a ring having 12 oxygen atoms (12 MR), at least one metal selected from the group constituted by group IIIA and VIIB metals and at least one porous mineral matrix. Said catalyst optionally also contains at least one metal selected from the group constituted by group IVA and VIB metals. The catalyst of the invention is used in a process for the transalkylation of alkylaromatic hydrocarbons such as toluene or benzene and alkylaromatics containing at least 9 carbon atoms.
    Type: Grant
    Filed: April 13, 2005
    Date of Patent: September 2, 2008
    Assignee: Institute Francais du Petrole
    Inventors: José Manuel Serra, Avelino Corma, Emmanuelle Guillon
  • Patent number: 7400978
    Abstract: A method of predicting petrophysical characteristics of an underground reservoir by constructing a geologic model consistent with seismic measurements is disclosed which permits optimization of oil reservoir development schemes. A geologic model, from which seismic data are simulated in depth, is constructed in depth. The geologic model is made consistent with seismic measurements acquired in time by minimization of an objective function by comparing the seismic measurements with seismic data simulated from the geologic model and converted to time. During minimization, the interval velocities used for conversion are updated by comparing, within the objective function, an observed thickness in time ?Tobsm,n between two markers with a thickness in time ?Tsimm,n simulated from the seismic data, and by modifying simulation parameters such as the error ?simm,n on the thickness of the two markers estimated in depth.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: July 15, 2008
    Assignee: Institute Francais du Petrole
    Inventors: Valérie Langlais, Mickaele Le Ravalec, Nathalie Lucet
  • Patent number: 7390393
    Abstract: The invention relates to a process for treating heavy petroleum feedstocks for producing a gas oil fraction that has a sulfur content of less than 50 ppm and most often 10 ppm that includes the following stages: a) ebulliated-bed catalytic hydrocracking, b) separation from hydrogen sulfide of a distillate fraction that includes a gas oil fraction and a heavier fraction than the gas oil, c) hydrotreatment of said distillate fraction, and d) separation of a gas oil fraction with less than 50 ppm of sulfur. Make-up hydrogen, preferably all make-up hydrogen, is to stage c). Advantageously, the heavier fraction from step (b) is subjected to catalytic cracking. The invention also relates to an installation that can be used for implementing this process.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: June 24, 2008
    Assignee: Institute Francais du Petrole
    Inventors: Christophe Gueret, Pierre Marion, Cecile Plain, Jerome Bonnardot, Eric Benazzi, Olivier Martin
  • Patent number: 7388811
    Abstract: This invention is a method of separating induced microseismicity signals from seismic signals acquired within active seismic monitoring operations carried out in underground zones under development which has application for monitoring of underground hydrocarbon or fluid storage reservoirs. Seismic records are formed from signals emitted by one or more seismic sources controlled by orthogonal signals. In this case, the signals are processed to separate the respective contributions of the at least one seismic source to the signals received and to reconstruct the seismograms equivalent to those that would be obtained by actuating the at least one seismic source separately.
    Type: Grant
    Filed: October 1, 2003
    Date of Patent: June 17, 2008
    Assignees: Institute Francais du Petrole, Compagnie Generale de Geophysique, Gaz de France
    Inventors: Julien Meunier, Frédéric Huguet
  • Patent number: 7374667
    Abstract: For the production of gasoline with a low sulfur content, a process comprises at least one stage for transformation of sulfur-containing compounds consisting of an alkylation or adsorption of sulfur-containing compounds and/or an increasing of the weight of light sulfur-containing compounds, at least one stage for treatment in the presence of an acid catalyst and at least one desulfurization treatment of at least a portion of the gasoline. The process can also optionally comprise at least one stage for selective hydrogenation of diolefins and optionally at least one fractionation of the gasoline that is obtained into at least two fractions: light gasoline and heavy gasoline.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: May 20, 2008
    Assignees: BP Corporation North America, Inc., Institute Francais du Petrole
    Inventors: Quentin Debuisschert, Denis Uzio, Jean-Luc Nocca, Florent Picard, David B Arnett, Mike Grayson, Donald E Zeek, Carl Snider
  • Patent number: 7373258
    Abstract: This invention describes a method for determining the content of conjugated diolefins by means of the measurement of the MAV of a sample of catalytic cracking gasoline or thermal cracking gasoline, from its NIR (near-infrared) spectrum, and the application of said method for monitoring a unit for selective hydrogenation of the cracking gasolines.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: May 13, 2008
    Assignee: Institute Francais du Petrole
    Inventors: Florent Picard, Clementina Lopez Garcia, Jean-Marc Bader, François Wahl