Patents Assigned to Integrated Process Systems Ltd
  • Patent number: 8029859
    Abstract: There is provided a method of depositing a Ge—Sb—Te thin film, including: a Ge—Sb—Te thin-film forming step of feeding and purging a first precursor including any one of Ge, Sb and Te, a second precursor including another one of Ge, Sb and Te and a third precursor including the other one of Ge, Sb and Te into and from a chamber in which a wafer is mounted and forming the Ge—Sb—Te thin film on the wafer; and a reaction gas feeding step of feeding reaction gas while any one of the first to third precursors is fed.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: October 4, 2011
    Assignee: Integrated Process Systems Ltd.
    Inventors: Jung-Wook Lee, Byung-Chul Cho, Ki-Hoon Lee, Tae-Wook Seo
  • Publication number: 20110151664
    Abstract: Provided are methods and apparatuses for manufacturing a multilayer metal thin film without additional heat treatment processes. The method of manufacturing a multilayer metal thin film including steps of: (a) forming a first metal layer on a substrate by flowing a first metal precursor into a first reaction container; and (b) forming a second metal layer on the first metal layer by flowing a second metal precursor into a second reaction container, wherein the step (b) is performed in a range of a heat treatment temperature of the first metal layer so that the second metal layer is formed as the first metal layer is heat-treated.
    Type: Application
    Filed: September 4, 2008
    Publication date: June 23, 2011
    Applicant: INTEGRATED PROCESS SYSTEMS LTD
    Inventors: Jung Wook Lee, Young Hoon Park
  • Patent number: 7842606
    Abstract: Disclosed herein are a method of depositing a thin film and a method of manufacturing a semiconductor using the same, having high selectivity by increasing etching resistance while an extinction coefficient associated with anti-reflectivity is maintained low. The method of depositing a thin film according to the invention includes (a) depositing an carbon anti-reflective film on the bottom film of a substrate; and (b) adding a compound containing nitrogen (N), fluorine (F) or silicon (Si) to the surface or the inner portion of the carbon anti-reflective film, to deposit a thin film of a-C:N, a-C:F or a-C:Si, having high selectivity, to a thickness from 1 to 100 nm using an atomic layer deposition process. Therefore, an ultrathin film having etching resistance is formed on or in the carbon anti-reflective film and the density and compressive stress of the carbon anti-reflective film are increased, thus increasing etching selectivity.
    Type: Grant
    Filed: November 28, 2005
    Date of Patent: November 30, 2010
    Assignee: Integrated Process Systems Ltd
    Inventors: Ki Hoon Lee, Young Hoon Park, Sahng Kyoo Lee, Tae Wook Seo, Ho Seung Chang
  • Publication number: 20080166887
    Abstract: Disclosed herein are a method of depositing a thin film and a method of manufacturing a semiconductor using the same, having high selectivity by increasing etching resistance while an extinction coefficient associated with anti-reflectivity is maintained low. The method of depositing a thin film according to the invention includes (a) depositing an carbon anti-reflective film on the bottom film of a substrate; and (b) adding a compound containing nitrogen (N), fluorine (F) or silicon (Si) to the surface or the inner portion of the carbon anti-reflective film, to deposit a thin film of a-C:N, a-C:F or a-C:Si, having high selectivity, to a thickness from 1 to 100 nm using an atomic layer deposition process. Therefore, an ultrathin film having etching resistance is formed on or in the carbon anti-reflective film and the density and compressive stress of the carbon anti-reflective film are increased, thus increasing etching selectivity.
    Type: Application
    Filed: November 28, 2005
    Publication date: July 10, 2008
    Applicant: INTEGRATED PROCESS SYSTEMS LTD
    Inventors: Ki Hoon Lee, Young Hoon Park, Sahng Kyoo Lee, Tae Wook Seo, Ho Seung Chang