Patents Assigned to Iowa State University Research Foundation, Inc.
  • Patent number: 11576353
    Abstract: An apparatus, systems, and methods of providing enrichment to poultry during raising or maintaining of the poultry. One or more light sources project beams to generate laser spots at and around the poultry. A control regimen moves the light spots relative the poultry in generally random fashion during timed sessions for each given time period (e.g. each day). The spot movement is designed to promote benefits to poultry and producer in correlation to experimental data related to animal welfare, health, and commercial value.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: February 14, 2023
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Elizabeth Ann Kraayenbrink, Anna Butters-Johnson, Derek Kraayenbrink
  • Patent number: 11576883
    Abstract: The present invention generally provides methods and compositions for the treatment of Parkinson's disease and depression and/or anxiety. The invention relates to recombinant microorganisms, particularly gut-colonizing probiotics, modified to produce L-DOPA.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: February 14, 2023
    Assignees: Iowa State University Research Foundation, Inc., Board of Regents, The University of Texas System
    Inventors: Anumantha G. Kanthasamy, Ahmed Abdalla, Gregory Phillips, Nicholas Backes, Andrew D. Ellington, Ross Thyer
  • Publication number: 20230025426
    Abstract: A coil configuration and method for transcranial magnetic stimulation enabling stimulation of deep regions of the brain without excessively stimulating the cortex is provided. The coil configuration utilizes at least one coil to produce an off-plane magnetic field to enhance the magnetic field from a top TMS coil. In one configuration at least a single variable position coil referred to as the Variable Halo Coil and positionable vertically and/or angularly is used.
    Type: Application
    Filed: September 26, 2022
    Publication date: January 26, 2023
    Applicant: Iowa State University Research Foundation, Inc.
    Inventors: David C. Jiles, Magundappa Ravi L. Hadimani, Priyam Rastogi
  • Patent number: 11547867
    Abstract: A coil configuration and method for transcranial magnetic stimulation enabling stimulation of deep regions of the brain without excessively stimulating the cortex is provided. The coil configuration utilizes at least one coil to produce an off-plane magnetic field to enhance the magnetic field from a top TMS coil. In one configuration three coils, referred to as the Triple Halo Coil and oriented at +30°, 0°, and ?30° relative to the plane of the TMS coil, are used. In another configuration a single variable position coil referred to as the Variable Halo Coil and positionable vertically and/or angularly is used.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: January 10, 2023
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: David C. Jiles, Magundappa Ravi L. Hadimani, Priyam Rastogi
  • Patent number: 11542322
    Abstract: Provided are aggregate alpha-synuclein specific antibodies as well as fragments, derivatives, and variants thereof as well as method related thereto for the early diagnostic and treatment of Parkinson's Disease and other Lewy body- and Lewy neurite-based diseases. Assays, kits, systems, and nanoparticle encapsulated compositions related to the antibodies or fragments, derivatives, and variants thereof are also disclosed.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: January 3, 2023
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Balaji Narasimhan, Surya Mallapragada, Anumantha G. Kanthasamy, Manohar John, Vellareddy Anantharam
  • Patent number: 11542454
    Abstract: The present invention is toward a base oil or lubricant additives, methods of using the same, lubricant compositions including the same, and methods of forming the lubricant compositions. A base oil or lubricant additive has Structure I or Structure II as described herein.
    Type: Grant
    Filed: July 20, 2021
    Date of Patent: January 3, 2023
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: George A. Kraus, Kyle Podolak, Derek Lee White, Sriram Sundararajan
  • Patent number: 11542520
    Abstract: Method of increasing protein content in a eukaryotic cell comprising an NF-YC4 gene comprising modifying the transcriptional repressor binding site; method of producing a plant with increased protein content comprising crossing and selecting for increased protein content; method of increasing resistance to a pathogen or a pest in a plant cell or plant comprising an NF-YC4 gene comprising modifying the transcriptional repressor binding site, alone or in further combination with expressing QQS in the plant cell or plant; method for producing a plant with increased resistance to a pathogen or a pest comprising crossing and selecting for increased resistance to the pathogen or the pest; a cell, collection of cells, tissue, organ, or organism, such as a plant, in which the NF-YC4 gene comprises a promoter comprising a transcriptional repressor binding site that has been modified so that the transcriptional repressor cannot prevent transcription of the NF-YC4; plants and hybrids thereof; and seeds.
    Type: Grant
    Filed: April 4, 2020
    Date of Patent: January 3, 2023
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Ling Li, Eve Syrkin Wurtele
  • Patent number: 11536721
    Abstract: In a general aspect, an apparatus can include a first carbon nanotube array that is patterned to define a first electrode having a first plurality of electrode segments. The apparatus can also include a second carbon nanotube array that is patterned to define a second electrode having a second plurality of electrode segments. The second plurality of electrode segments can be interdigitated with the first plurality of electrode segments. The apparatus can further include a biorecognition agent disposed on a surface of the first electrode and disposed on a surface of the second electrode. The first plurality of electrode segments can each have a height-to-width aspect ratio of at least 1 to 1.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: December 27, 2022
    Assignees: Iowa State University Research Foundation, Inc., Brigham Young University
    Inventors: Jonathan Claussen, Suprem Das, Brian D. Iverson
  • Publication number: 20220401004
    Abstract: Embodiments of a system for controlling an object using brainwaves are disclosed. The system includes a set of EEG electrodes configured to be positioned on a head of a user and to collect EEG signals. The system further includes one or more computer readable storage mediums storing a framework configured to execute an extensible architecture through which EEG signals are interpreted for control of the object. The framework includes an EEG device plugin associated with the set of EEG electrodes and configured to extract the EEG signals from the set of EEG electrodes. The framework also includes an interpreter plugin configured to convert the EEG signals extracted by the EEG device plugin into a command. Further, the framework includes an object control plugin configured to access the command through an extension point of the interpreter plugin and to execute the command to control the object.
    Type: Application
    Filed: June 21, 2021
    Publication date: December 22, 2022
    Applicant: Iowa State University Research Foundation, Inc.
    Inventors: Lotfi B. Othmane, Nicholas J. Schmidt
  • Patent number: 11524982
    Abstract: The present invention is directed to novel polynucleotides, polypeptides, and polyproteins of Mycoplasma surface proteins, all of which are useful in detecting infection and for the preparation of vaccines for treating and preventing diseases in swine and other animals. Vaccines provided according to the practice of the invention are effective against Mycoplasma infections. Detection and therapeutic polyclonal and monoclonal antibodies are also a feature of the present invention. Assays, kits, systems, and nanoparticle encapsulated compositions related to the polynucleotides, polypeptides, polyproteins, antibodies or fragments, derivatives, and variants thereof are also disclosed.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: December 13, 2022
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Luis Gabriel Gimenez-Lirola, Bailey Arruda
  • Patent number: 11524279
    Abstract: A MXene support for a noble metal that forms a catalyst having active sites comprising single metal-layer nanostructures. The catalyst is stable under conditions for methane conversion to higher hydrocarbons and provides reduced coke formation. The results show a supported metal catalyst using the MXene where Pt atoms form one or more layers of atoms on the surface of the Mo2TiC2Tx support after it is reduced at 750° C. The catalyst shows high selectivity for C2-hydrocarbons with reduced coke formation, which can cost effectively convert methane into other valuable products.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: December 13, 2022
    Assignees: Iowa State University Research Foundation, Inc., Purdue Research Foundation
    Inventors: Zhe Li, Yue Wu, Arvind Varma, Yang Xiao
  • Patent number: 11515066
    Abstract: Improved manufacturing processes and resulting anisotropic permanent magnets, such as for example alnico permanent magnets, having highly controlled and aligned microstructure in the solid state are provided. A certain process embodiment involves applying a particular orientation and strength of magnetic field to loose, binder-coated magnet alloy powder particles in a compact-forming device as they are being formed into a compact in order to preferentially align the magnet alloy powder particles in the compact. The preferential alignment of the magnet alloy powder particle is locked in place in the compact by the binder after compact forming is complete. After removal from the device, the compact can be subjected to a subsequent sintering or other heat treating operation.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: November 29, 2022
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Aaron G. Kassen, Iver E. Anderson, Emma Marie Hamilton White, Matthew J. Kramer, David J. Byrd, Liangfa Hu
  • Patent number: 11506553
    Abstract: We present a microelectromechanical system (MEMS) graphene-based pressure sensor realized by transferring a large area, few-layered graphene on a suspended silicon nitride thin membrane perforated by a periodic array of micro-through-holes. Each through-hole is covered by a circular drum-like graphene layer, namely a graphene “microdrum”. The uniqueness of the sensor design is the fact that introducing the through-hole arrays into the supporting nitride membrane allows generating an increased strain in the graphene membrane over the through-hole array by local deformations of the holes under an applied differential pressure. Further reasons contributing to the increased strain in the devised sensitive membrane include larger deflection of the membrane than that of its imperforated counterpart membrane, and direct bulging of the graphene microdrum under an applied pressure. Electromechanical measurements show a gauge factor of 4.4 for the graphene membrane and a sensitivity of 2.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: November 22, 2022
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Liang Dong, Qiugu Wang, Wei Hong
  • Patent number: 11491546
    Abstract: Described herein are additive manufacturing methods and products made using such methods. The alloy compositions described herein are specifically selected for the additive manufacturing methods and provide products that exhibit superior mechanical properties as compared to their cast counterparts. Using the compositions and methods described herein, products that do not exhibit substantial coarsening, such as at elevated temperatures, can be obtained. The products further exhibit uniform microstructures along the print axis, thus contributing to improved strength and performance. Additives also can be used in the alloys described herein.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: November 8, 2022
    Assignees: UT-Battelle, LLC, University of Tennessee Research Foundation, Iowa State University Research Foundation, Inc., Eck Industries Incorporated
    Inventors: Alex J. Plotkowski, Orlando Rios, Sudarsanam Suresh Babu, Ryan R. Dehoff, Ryan Ott, Zachary C. Sims, Niyanth Sridharan, David Weiss, Hunter B. Henderson
  • Patent number: 11483974
    Abstract: A sensor input is detected on a cotton harvester. A performance characteristic value is identified based upon the detected sensor input. A speed control system controls cotton harvester drum speed and spindle speed, automatically, and separately from the ground speed of the cotton harvester, to improve the performance characteristic value, in a closed-loop fashion.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: November 1, 2022
    Assignees: Deere & Company, IOWA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventors: Brandon C. Carlson, Charles F. Ostermeier, Nicholas W. Vanlaningham, Jeffrey S. Wigdahl, Kurt D. Gustafson, Jeffrey C. Askey
  • Patent number: 11485701
    Abstract: The present invention relates to monoterpenoid and phenylpropanoid containing derivative compounds, methods of making the compounds, compositions comprising the compounds, and methods of repelling pests using the compounds and/or compositions.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: November 1, 2022
    Assignee: IOWA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventors: Joel R. Coats, Edmund J. Norris, James Scott Klimavicz
  • Patent number: 11465397
    Abstract: An economical, efficient, and effective formation of a high resolution pattern of conductive material on a variety of films by polymer casting. This allows, for example, quite small-scale patterns with sufficient resolution for such things as effective microelectronics without complex systems or steps and with substantial control over the characteristics of the film. A final end product that includes that high resolution functional pattern on any of a variety of substrates, including flexible, stretchable, porous, biodegradable, and/or biocompatible. This allows, for example, highly beneficial options in design of high resolution conductive patterns for a wide variety of applications.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: October 11, 2022
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Metin Uz, Surya Mallapragada
  • Patent number: 11467133
    Abstract: The present disclosure provides methods and systems for the characterization of a potential microtexture region (MTR) of a sample, component, or the like. The methods may include determining a threshold width of spatial correlation coefficient and/or a threshold spatial correlation coefficient slope for an actual MTR, characterizing a potential MTR as an actual MTR or a defect, characterizing an actual MTR as an acceptable MTR or not, and/or characterizing various components with potential MTRs as defective or not. The characterization may include calculating a width of spatial correlation coefficient and/or a spatial correlation coefficient slope of the potential MTR and comparing the width of spatial correlation coefficient to a threshold width of spatial correlation coefficient and/or comparing the spatial correlation coefficient slope to a threshold spatial correlation coefficient slope for the potential MTR to be characterized as an actual MTR or a defect (crack).
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: October 11, 2022
    Assignees: Raytheon Technologies Corporation, Iowa State University Research Foundation, Inc.
    Inventors: Yong Tian, Ronald Roberts, Dan Barnard
  • Patent number: 11453937
    Abstract: Magnet microstructure manipulation in the solid state by controlled application of a sufficient stress in a direction during high temperature annealing in a single-phase region of heat-treatable magnet alloys, e.g., alnico-type magnets is followed by magnetic annealing and draw annealing to improve coercivity and saturation magnetization properties. The solid-state process can be termed highly controlled abnormal grain growth (hereafter AGG) and will make aligned sintered anisotropic magnets that meet or exceed the magnetic properties of cast versions of the same alloy types.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: September 27, 2022
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Iver E. Anderson, Emma Marie Hamilton White, Matthew J. Kramer, Aaron G. Kassen, Kevin W. Dennis
  • Patent number: 11452293
    Abstract: (S)-5-ethynyl-anabasine and derivatives thereof; composition comprising same and a carrier; methods of treating an animal; method of protecting a plant from a pest; and methods of making compound and derivatives.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: September 27, 2022
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Richard J. Martin, Alan P. Robertson, Brett VanVeller, Xiangwei Du, Fudan Zheng