Patents Assigned to IsoLynx, LLC
  • Patent number: 11813512
    Abstract: A method optimizes an object tracking system that uses receivers to receive beacon signals, or pings, from tracking tags that are attached to objects. An optimizer receives locations of the tracking tags and groups identifiers of the tracking tags into two or more sets. The first set identifies tracking tags that are attached to objects involved in a situation of interest. The optimizer determines a first receiver group based on the locations of tracking tags in the first set and the locations of the receivers. The optimizer determines a center of a smallest three-dimensional polygon bounding the locations of tracking tags in the first set. An antenna of each receiver in the first receiver group is then steered to point towards the center of the polygon while a number of receiver events per second generated by the receiver for tracking tags in the first set increases.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: November 14, 2023
    Assignee: Isolynx, LLC
    Inventors: Douglas J. DeAngelis, Edward G. Evansen, Gerard M. Reilly, Brian D. Rhodes, Joseph M. Gaudreau, Kirk M. Sigel, Alexander T. Farkas
  • Patent number: 11683452
    Abstract: An image-stream windowing method includes capturing, with a camera located at a fixed position and having a fixed field of view, a high-resolution image stream of an object that moves during said capturing. The high-resolution image stream includes a sequence of high-resolution frames. The method also includes determining, for each high-resolution frame of the sequence of high-resolution frames, a respective window, of a sequence of windows corresponding to the sequence of high-resolution frames, that encloses the object within said each high-resolution frame. The size and location of the respective window are determined based at least on the fixed position, the fixed field of view, and a position of the object. The method also includes generating a low-resolution image stream from the high-resolution image stream by cropping said each high-resolution frame with its respective window.
    Type: Grant
    Filed: April 25, 2022
    Date of Patent: June 20, 2023
    Assignee: Isolynx, LLC
    Inventors: Douglas J. DeAngelis, Kirk Sigel, Edward G. Evansen
  • Patent number: 11553520
    Abstract: A system and method dynamically schedule wireless transmissions without collision. A master transmitter periodically transmits a time mark during a first predefined time slot of a plurality of consecutive time slots that form a transmission block. Multiple consecutive transmission blocks form a frame. An announcement transmission from a wireless transmitting device is received via at least one receiver during a second predefined time slot of the plurality of time slots. An allocator allocates, at least partly based upon the received announcement transmission, a third time slot of the plurality of time slots to the wireless transmitting device. A time slot reservation area of at least one subsequently transmitted time mark includes indication of the allocation of the third time slot to the wireless transmitting device. The wireless transmitting device receives the subsequently transmitted time mark and transmits only during the third time slot of subsequent frames.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: January 10, 2023
    Assignee: ISOLYNX, LLC
    Inventors: Justin Emrys Bennett, Mike Etienne Ciholas, Herbert Alan Hollinger, Jeremy Wayne Aldridge, Mason Thomas Blankenship, Daniel Lawrence Morris
  • Patent number: 11408969
    Abstract: Object tracking anti-jitter filtering systems and methods. A plurality of raw location points for a tracking tag attached to a tracked object is received. The raw location points are stored within a raw location points buffer. Raw location points within an averaging window are averaged to generate an averaged location point. The averaged location point is stored within an averaged location points buffer for use within the object tracking system.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: August 9, 2022
    Assignee: ISOLYNX, LLC
    Inventors: Douglas J. DeAngelis, Gerard M. Reilly, Kirk M. Sigel, Edward G. Evansen
  • Patent number: 11394121
    Abstract: A nonplanar tracking tag includes a nonplanar complementary patch antenna having an antenna ground plane, a first antenna patch lying in a first plane forming a first angle with the antenna ground plane, and a second antenna patch lying in a second plane forming a second angle with the antenna ground plane. The patch antenna may be formed on a flexible circuit and electrically coupled to a transceiver. The tracking tag may also include a dielectric material shaped and sized to position the first and second antenna patches, when the flexible circuit is wrapped around the dielectric material, in the first and second planes. Advantageously, the radiation pattern produced by the nonplanar complementary patch antenna is biased away from a normal axis of the tracking tag, and therefore can communicate efficiently with receivers when the tracking tag is oriented with its normal axis pointing away from the receivers.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: July 19, 2022
    Assignee: Isolynx, LLC
    Inventor: Alexander T. Farkas
  • Patent number: 11358046
    Abstract: A method for dynamically configuring a receiver of an object tracking system includes detecting an environmental or situation change with the tracking system, and transmitting, in response to the detected change, a signal to the receiver to switch from a first analog front end to a second analog front. The analog front ends may have antennas with different gain, or antennas with the same gain but different filters. The environmental change may be detected based on events per second received from the receiver. The situational change may be detected by determining a bounding region encompassing tracking-tag locations and identifying an optimum analog front end from a plurality of analog front ends of the receiver. A signal is then transmitted to the receiver to switch to the optimum analog front end. The optimum analog front end is the one analog front end having the greatest coverage of the bounding area.
    Type: Grant
    Filed: March 20, 2021
    Date of Patent: June 14, 2022
    Assignee: Isolynx, LLC
    Inventors: Douglas J. DeAngelis, Edward G. Evansen, Gerard M. Reilly, Brian D. Rhodes, Joseph M. Gaudreau, Kirk M. Sigel, Alexander T. Farkas
  • Patent number: 11317062
    Abstract: A camera for facilitating autonomous picture production includes an imager for capturing an image stream, a signal processor for processing the image stream into a plurality of image data paths, at least one image stream output, and a memory for cyclically buffering images of at least two of the plurality of image data paths, into separate circular buffers, respectively, and for buffering one or more output image streams of the camera. A camera for facilitating autonomous picture production produces a standard resolution and rate image stream and a slow-motion image stream of an action of interest.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: April 26, 2022
    Assignee: Isolynx, LLC
    Inventors: Douglas J. DeAngelis, Kirk Sigel, Edward G. Evansen
  • Patent number: 11171405
    Abstract: A planar flexible ultra-wide band (UWB) RF antenna includes a flexible non-electrically-conductive substrate and at least one antenna patch having electrically conductive metal positioned on one side of the flexible non-electrically-conductive substrate and having geometry defining a wirelessly transmitted UWB signal. The antenna may electrically couple with an RF transmitter circuit formed on a second side of the flexible substrate and controlled by a microcontroller circuit, formed on the second side, to transmit a radio signal. The RF tag may include at least one decoupling circuit directly electrically connected to the RF antenna and having a decoupling frequency that is different from a transmitting frequency of the antenna. The decoupling circuit transfers power from the antenna when the antenna receives capacitive power from an external non-electrical contact charger operating at the decoupling frequency and having at least one plate of similar geometry to the at least one antenna patch.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: November 9, 2021
    Assignee: ISOLYNX, LLC
    Inventor: Alexander T. Farkas
  • Patent number: 10953304
    Abstract: Systems, methods and software products optimize installation and operation of an object tracking system. Performance of the athlete tracking system is continually monitored and optimized based upon one or more of: statically positioned tags, grouping tags within two or more tag sets to assign ping rates, selecting receiver configuration and aim dynamically based upon environmental and situational conditions. Tracking tags are improved to facilitate coupling of the tag to an athlete and may be self-configurable. A trackable protection pad allows a tracking tag to be positioned substantially horizontal when the athlete is competing. A data replay tool replays location tracking information in chronological order and visually plots location of tracking tags and errors in the determined location. A tag manager automatically configures the tracking tags. A robotic vehicle automated installation of the object tracking system.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: March 23, 2021
    Assignee: ISOLYNX, LLC
    Inventors: Douglas J. DeAngelis, Edward G. Evansen, Gerard M. Reilly, Brian D. Rhodes, Joseph M. Gaudreau, Kirk M. Sigel, Alexander T. Farkas
  • Patent number: 10957121
    Abstract: A method for determining split times in a relay race run using one or more lanes of a running track, where a relay team in each lane carries a respective relay baton, includes, for each lane: (a) periodically determining a location of the respective relay baton, (b) determining, for one or more take-over zones in the lane, respective first times when the relay baton crosses a respective line within the take-over zone, (c) determining a second time when a finish line of the relay race is reached, and (d) determining a split time for each segment of the relay race, based upon a start time of the relay race, the one or more first times, and the second time.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: March 23, 2021
    Assignee: ISOLYNX, LLC
    Inventors: Douglas J. DeAngelis, Edward G. Evansen
  • Patent number: 10904917
    Abstract: A system and method dynamically schedule wireless transmissions without collision. A master transmitter periodically transmits a time mark during a first predefined time slot of a plurality of consecutive time slots that form a transmission block. Multiple consecutive transmission blocks form a frame. An announcement transmission from a wireless transmitting device is received via at least one receiver during a second predefined time slot of the plurality of time slots. An allocator allocates, at least partly based upon the received announcement transmission, a third time slot of the plurality of time slots to the wireless transmitting device. A time slot reservation area of at least one subsequently transmitted time mark includes indication of the allocation of the third time slot to the wireless transmitting device. The wireless transmitting device receives the subsequently transmitted time mark and transmits only during the third time slot of subsequent frames.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: January 26, 2021
    Assignee: ISOLYNX, LLC
    Inventors: Justin Emrys Bennett, Mike Etienne Ciholas, Herbert Alan Hollinger, Jeremy Wayne Aldridge, Mason Thomas Blankenship, Daniel Lawrence Morris
  • Patent number: 10742934
    Abstract: An autonomous picture production system for automatically capturing an image of a location within a spectator seating area of a stadium upon request of a spectator includes one or more motorized cameras, an external interaction device for receiving an external request from the spectator, a camera control device for determining an optimal camera from the one or more motorized cameras for capturing the image, the camera control device controlling the optimal camera to capture the image, and a database for storing the image, wherein the external interaction device informs the spectator how to retrieve the image from the database.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: August 11, 2020
    Assignee: ISOLYNX, LLC
    Inventors: Douglas J. DeAngelis, Kirk Sigel, Edward G. Evansen
  • Patent number: 10701322
    Abstract: A camera for facilitating autonomous picture production includes an imager for capturing an image stream, a signal processor for processing the image stream into a plurality of image data paths, at least one image stream output, and a memory for cyclically buffering images of at least two of the plurality of image data paths, into separate circular buffers, respectively, and for buffering one or more output image streams of the camera. A camera for facilitating autonomous picture production produces a standard resolution and rate image stream and a slow-motion image stream of an action of interest.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: June 30, 2020
    Assignee: ISOLYNX, LLC
    Inventors: Douglas J. DeAngelis, Kirk Sigel, Edward G. Evansen
  • Patent number: 10665948
    Abstract: Systems and methods improve tracking performance of an ultra-wideband (UWB) tracking tag positioned on a player on a sporting field. A UWB antenna is formed with power radiated disproportionately in forward and backward directions as compared to sideways. The UWB tracking tag is aligned with the UWB antenna when positioned on the player such that less power is absorbed by the player than radiated away from the player. The UWB antenna is monopole and may be folded from a single metal sheet forming: a flat top; a first side folded at an acute angle from one edge of the top; a second side folded at an acute angle from another edge of the top; a first solder tab folded at an obtuse angle from the first side; and a second solder tab folded at an obtuse angle from the second side, to join in parallel with the first solder tab.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: May 26, 2020
    Assignee: ISOLYNX, LLC
    Inventor: Alexander T. Farkas
  • Patent number: 10552967
    Abstract: A method for using tracking tags to control mobile cameras to determine and capture desired perspective views of objects of interest (OOIs), includes locating each OOI and determining an orientation of each OOI. A second location of each mobile camera is determined with an orientation of each mobile camera; the method includes controlling, based upon the first and second location, and the orientations, the mobile camera to maintain desired perspective views of the OOIs despite movement of the OOIs. The method executes on a system for controlling a mobile camera including tracking tags configured with each OOI and tracking tags configured with the mobile cameras. A tracking apparatus having at least three receivers positioned around an operational area receives locate signals from the tracking tags to determining location data and a processor determines movement plans for the mobile cameras.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: February 4, 2020
    Assignee: ISOLYNX, LLC
    Inventors: Douglas J. DeAngelis, Edward G. Evansen, Gerard M. Reilly, Kirk M. Sigel
  • Patent number: 10441867
    Abstract: Systems, methods and software products optimize installation and operation of an object tracking system. Performance of the athlete tracking system is continually monitored and optimized based upon one or more of: statically positioned tags, grouping tags within two or more tag sets to assign ping rates, selecting receiver configuration and aim dynamically based upon environmental and situational conditions. Tracking tags are improved to facilitate coupling of the tag to an athlete and may be self-configurable. A trackable protection pad allows a tracking tag to be positioned substantially horizontal when the athlete is competing. A data replay tool replays location tracking information in chronological order and visually plots location of tracking tags and errors in the determined location. A tag manager automatically configures the tracking tags. A robotic vehicle automated installation of the object tracking system.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: October 15, 2019
    Assignee: ISOLYNX, LLC
    Inventors: Douglas J. DeAngelis, Edward G. Evansen, Gerard M. Reilly, Brian D. Rhodes, Joseph M. Gaudreau, Kirk M. Sigel, Alexander T. Farkas
  • Patent number: 10446934
    Abstract: Systems and methods improve tracking performance of an ultra-wide-band (UWB) tracking tag positioned on a player on a sporting field. A UWB antenna is formed with power radiated disproportionately in forward and backward directions as compared to sideways. The UWB tracking tag is aligned with the UWB antenna when positioned on the player such that less power is absorbed by the player than radiated away from the player. The UWB antenna is monopole and may be folded from a single metal sheet forming: a flat top; a first side folded at an acute angle from one edge of the top; a second side folded at an acute angle from another edge of the top; a first solder tab folded at an obtuse angle from the first side; and a second solder tab folded at an obtuse angle from the second side, to join in parallel with the first solder tab.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: October 15, 2019
    Assignee: ISOLYNX, LLC
    Inventor: Alexander T. Farkas
  • Patent number: 10433113
    Abstract: A method for determining split-times in a relay race run using one or more lanes of a running track, where a relay team in each lane carries a respective relay baton, includes, for each lane: (a) periodically determining a location of the respective relay baton, (b) determining, for one or more take-over zones in the lane, respective first times when the relay baton crosses a respective line within the take-over zone, (c) determining a second time when a finish line of the relay race is reached, and (d) determining a split-time for each segment of the relay race, based upon a start time of the relay race, the one or more first times, and the second time.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: October 1, 2019
    Assignee: ISOLYNX, LLC
    Inventors: Douglas J. DeAngelis, Edward G. Evansen
  • Patent number: 10420981
    Abstract: A computer-implemented method for determining a target situation in an athletic event. Positional information including the relative positions of a group of selected participants is initially received from a tracking system, and the aggregate motion of the selected participants is detected in real-time using the positional information. The target situation may be determined to have occurred when a change in the aggregate motion occurs in accordance with a predetermined characteristic during an initial time interval.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: September 24, 2019
    Assignee: ISOLYNX, LLC
    Inventors: Douglas J. DeAngelis, Kirk M. Sigel, Edward G. Evansen
  • Patent number: 10416275
    Abstract: A method and software product display errors of a tracking system that utilizes a plurality of receivers positioned around a tracking area to receive pings periodically transmitted by a tracking tag within the tracking area. For each locate received from the tracking system, a symbol indicative of the locate is plotted on a display graphically depicting the tracking area. A vector connecting each pair of chronologically consecutive symbols is plotted on the display, the vector visually indicating an error within the locates that would otherwise not be visible on the display. Another method concurrently displays predicted sensitivity for each of at least two receivers of a tracking system that locates tracking tags within a tracking area, the receivers being positioned within a surrounding area of the tracking area. A graphical representation of the surrounding area, the tracking area, and receiver sensitivities indicate the predicted receiver coverage of the tracking area.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: September 17, 2019
    Assignee: ISOLYNX, LLC
    Inventors: Douglas J. DeAngelis, Edward G. Evansen, Gerard M. Reilly, Brian D. Rhodes, Joseph M. Gaudreau, Kirk M. Sigel