Patents Assigned to J-PLASMA GMBH
  • Patent number: 10131565
    Abstract: Preform for an optical waveguide containing a core with a non-circular geometry and at least one cladding layer, in which the dopand concentration of the cladding layer is increased compared to the dopand concentration of a preform with circular core geometry and identical NA. A method for the production of a preform for an optical fiber is provided. An optical waveguide with a nominal dopand concentration of c(eff)×F?c(nom) in at least one cladding layer is also provided.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: November 20, 2018
    Assignee: j-plasma GmbH
    Inventors: Ralitsa Rosenow, Roland Heinze, Jörg Kötzing, Robert Hanf, Lothar Brehm
  • Patent number: 9738556
    Abstract: A method for producing rod lenses with an enveloping diameter of the rod lens face of up to 200 mm and an edge length of at least 800 mm. The method is characterized in that fabrication is performed from a cylindrical rod lens element made from synthetic quartz glass material configured as a fused silica ingot. This is performed using a flame hydrolysis method with a direct one stage deposition process of SIOx particles from a flame stream onto die that rotates and is moveable in a linear manner with respect to the flame stream.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: August 22, 2017
    Assignee: J-PLASMA GMBH
    Inventors: Lothar Brehm, Frank Coriand, Wolfgang Schmidt, Ulrich Strobel
  • Patent number: 9475729
    Abstract: The invention describes a method for the removal of glass where the parameters of the removal process are set over the length of the substrate (preform) so that a uniform removal can be achieved over the complete substrate length.
    Type: Grant
    Filed: October 23, 2015
    Date of Patent: October 25, 2016
    Assignee: j-plasma GmbH
    Inventors: Jörg Kötzing, Robert Hanf, Lothar Brehm
  • Patent number: 9382149
    Abstract: Methods for producing a semifinished part for the manufacture of an optical fiber are disclosed. The methods are optimized in terms of bending. The methods include the steps of providing a shell tube with a shell refractive index which is lower in relation to the light-conducting core. Then, at least one protective, intermediate and/or barrier layer is applied to a radially outermost and/or innermost tube surface of the respective shell tube, wherein a build-up of light-conducting layers is realized on the inner side and/or the outer side of the shell tube. Finally, the shell tubes are joined by collapsing so as to form the semifinished part.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: July 5, 2016
    Assignee: j-plasma GmbH
    Inventors: Lothar Brehm, Matthias Auth, Jörg Kötzing
  • Publication number: 20150043880
    Abstract: Methods for producing a semifinished part for the manufacture of an optical fiber are disclosed. The methods are optimized in terms of bending. The methods include the steps of providing a shell tube with a shell refractive index which is lower in relation to the light-conducting core. Then, at least one protective, intermediate and/or barrier layer is applied to a radially outermost and/or innermost tube surface of the respective shell tube, wherein a build-up of light-conducting layers is realized on the inner side and/or the outer side of the shell tube. Finally, the shell tubes are joined by collapsing so as to form the semifinished part.
    Type: Application
    Filed: May 10, 2012
    Publication date: February 12, 2015
    Applicant: j-plasma GmbH
    Inventors: Lothar Brehm, Matthias Auth, Jörg Kötzing
  • Publication number: 20140086544
    Abstract: An optical fiber has a core region, a cladding region and at least one spacer layer disposed between the core region and the cladding region. The core region is positively doped and has a positive refractive index with respect to the glass matrix of the optical fiber. The cladding region is negatively doped and has a refractive index of at most zero with respect to the glass matrix. The numerical aperture of the optical fiber is composed of variable proportions of the positively doped core region and the negatively doped cladding region and results from the refractive indices of both regions.
    Type: Application
    Filed: May 24, 2012
    Publication date: March 27, 2014
    Applicant: j-plasma GmbH
    Inventors: Matthias Auth, Jorg Kotzing, Harald Hein, Elke Poppitz, Wolfgang Haemmerle, Lothar Brehm, Christian Genz
  • Publication number: 20130160496
    Abstract: A method for producing rod lenses with an enveloping diameter of the rod lens face of up to 200 mm and an edge length of at least 800 mm. The method is characterized in that fabrication is performed from a cylindrical rod lens element made from synthetic quartz glass material configured as a fused silica ingot. This is performed using a flame hydrolysis method with a direct one stage deposition process of SIOx particles from a flame stream onto die that rotates and is moveable in a linear manner with respect to the flame stream.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 27, 2013
    Applicant: J-PLASMA GMBH
    Inventor: j-plasma GmbH
  • Publication number: 20130034322
    Abstract: The invention relates to an optical waveguide and a semifinished product for producing an optical waveguide having optimized diffraction properties, comprising a trench structure that has a radius-dependent graded refractive index curve and/or a concentric depressed refractive index profile within a core zone (2) and/or within a cladding zone (4). In one embodiment of the optical waveguide and semifinished product, the structure is formed from a succession of differently doped regions containing dopants that are introduced into a base matrix and lower and/or increase the refractive index.
    Type: Application
    Filed: October 26, 2011
    Publication date: February 7, 2013
    Applicant: J-PLASMA GMBH
    Inventors: Matthias Auth, Jürgen Rosenkranz, Jörg Kotzing, Wolfgang Hämmerle, Lothar Brehm