Patents Assigned to JX Nippon Oil & Energy Corporation
  • Patent number: 9868912
    Abstract: A method for producing a lubricating base oil, comprising: performing a 13C-NMR analysis regarding an oil to be treated and selecting the oil based on a value for dividing an integrated value of a peak for a tertiary carbon atom by an integrated value of all peaks at 0 to 50 ppm, a value for dividing an integrated value of a peak for a carbon atom constituting a main chain by the integrated value of all peaks at 0 to 50 ppm, and a value for dividing an integrated value of a peak for a branched CH3 bonded to a fifth or the following carbon atom from a terminal carbon atom in the main chain by an integrated value of all peaks at 10 to 25 ppm, and obtaining a dewaxed oil by isomerization dewaxing of the oil selected in the first step, is disclosed.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: January 16, 2018
    Assignee: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Kazuaki Hayasaka, Yasushi Wada, Marie Iwama, Koshi Takahama
  • Patent number: 9868112
    Abstract: A Fischer-Tropsch synthesis catalyst containing 10 to 30% by mass, as a metal atom, of metallic cobalt and/or cobalt oxide, based on the mass of the catalyst, supported on a carrier containing silica, in which the carrier has an average pore diameter of 8 to 25 nm and the metallic cobalt and/or cobalt oxide has an average crystallite diameter of not less than the average pore diameter of the carrier and less than 35 nm.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: January 16, 2018
    Assignee: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Hideki Ono, Yoshiyuki Nagayasu, Kazuaki Hayasaka
  • Patent number: 9862785
    Abstract: A method for producing an olefin polymer, in which an olefin compound is polymerized in the presence of a Lewis acid catalyst at a temperature of 0° C. or lower to obtain an olefin polymer, the method comprising a step of feeding a raw material liquid including the olefin compound to a reactor provided with a cooling unit, a step of polymerizing the olefin compound in the reactor to obtain a reaction liquid including the olefin polymer, a deactivation step of adding a deactivator to the reaction liquid taken out from the reactor to deactivate the Lewis acid catalyst, and a step of supplying the reaction liquid after the deactivation step to a cold recovery unit to recover cold from the reaction liquid, wherein the amount of the Lewis acid catalyst is 0.5×10?3 to 1.0×10?1 mol % based on the total amount of the olefin compound.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: January 9, 2018
    Assignee: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Tatsuya Chiba, Koichi Sato, Teruhisa Kuroki, Ryuichiro Furusawa, Takeshi Omata
  • Patent number: 9862897
    Abstract: The method for producing a monocyclic aromatic hydrocarbon includes a cracking and reforming reaction step in which a catalyst for producing a monocyclic aromatic hydrocarbon containing crystalline aluminosilicate which has been subjected to a heat treatment in an atmosphere containing water vapor in advance is loaded into a fixed-bed reactor, and a feedstock oil having a 10 volume % distillate temperature of 140° C. or higher and a 90 volume % distillate temperature of 390° C. or lower is brought into contact with the catalyst to cause a reaction, so as to obtain a product containing a monocyclic aromatic hydrocarbon having 6 to 8 carbon atoms.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: January 9, 2018
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Yasuyuki Iwasa, Shinichiro Yanagawa, Masahide Kobayashi
  • Patent number: 9862654
    Abstract: A method for producing xylene from feedstock oil includes a cracking/reforming reaction step of bringing the feedstock oil into contact with a catalyst to produce monocyclic aromatic hydrocarbons; a separation/recovery step of separating and recovering, from a product obtained by the cracking/reforming reaction step, a fraction A containing monocyclic aromatic hydrocarbons having a 10 vol % distillation temperature of 75° C. or higher and a 90 vol % distillation temperature of 140° C. or lower, a xylene fraction containing xylene, and a fraction B containing monocyclic aromatic hydrocarbons having a 10 vol % distillation temperature of 145° C. or higher and a 90 vol % distillation temperature of 215° C. or lower; and a xylene conversion step of bringing a mixed fraction obtained by mixing the fractions A and B with each other into contact with a catalyst containing a solid acid to convert the mixed fraction into xylene.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: January 9, 2018
    Assignees: JX Nippon Oil & Energy Corporation, CHIYODA CORPORATION
    Inventors: Shinichiro Yanagawa, Yuichiro Fujiyama, Yasuyuki Iwasa, Ryoji Ida, Susumu Yasui, Yoshishige Sugi, Atsushi Fukui, Akira Utatsu
  • Publication number: 20180002823
    Abstract: An electrochemical reduction device comprising: an electrode unit configured to include an electrolyte membrane, a reduction electrode that contains a reduction catalyst for hydrogenating at least one benzene ring of an aromatic compound, and an oxygen evolving electrode; a power control unit that applies a voltage Va between the reduction electrode and the oxygen evolving electrode; a concentration measurement unit that measures a concentration of an aromatic compound to be supplied to the reduction electrode; and a raw material supply amount adjustment unit that adjusts the amount of an organic liquid including an aromatic compound to be supplied to the reduction electrode per unit time based on the concentration measured by the concentration measurement unit.
    Type: Application
    Filed: September 14, 2017
    Publication date: January 4, 2018
    Applicant: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Yasushi SATO, Kota MIYOSHI, Kojiro NAKAGAWA, Yoshihiro KOBORI
  • Patent number: 9846356
    Abstract: Provided is a film for a transparent screen which can clearly display merchandise information, advertisement, or the like on a transparent partition or the like by projection without compromising the transmission visibility. A film for a transparent screen according to the present invention includes: a resin layer; and inorganic particles at least a portion of which is contained in an aggregated state in the resin layer, wherein primary particles of the inorganic particles have a median diameter of 0.1 to 50 nm and a maximum particle size of 10 to 500 nm, and the content of the inorganic particles is 0.015 to 1.2% by mass with respect to the resin.
    Type: Grant
    Filed: April 10, 2015
    Date of Patent: December 19, 2017
    Assignees: TOKYO INSTITUTE OF TECHNOLOGY, JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Junji Watanabe, Koichi Sakajiri, Kousuke Yamaki, Suzushi Nishimura, Akira Matsuo
  • Patent number: 9845435
    Abstract: Provided is a hydrotreating step (A) containing a hydroisomerization step (A1) that obtains a hydroisomerized oil (a1) by bringing a FT synthesis oil into contact with a hydroisomerization catalyst and/or a hydrocracking step (A2) that obtains a hydrocracked oil (a2) by bringing it into contact with a hydrocracking catalyst, and a fractionation step (B) that transfers at least a portion of the hydrotreated oil (a) composed of the hydroisomerized oil (a1) and/or the hydrocracked oil (a2) to a fractionator and, at the very least, obtains a middle distillate (b1) with a 5% distillation point of 130 to 170° C. and a 95% distillation point of 240 to 300° C., and a heavy oil (b2) that is heavier than the middle distillate (b1).
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: December 19, 2017
    Assignees: Japan Oil, Gas and Metals National Corporation, INPEX CORPORATION, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Takuya Niitsuma, Marie Iwama
  • Patent number: 9845433
    Abstract: A method for producing an olefin and a monocyclic aromatic hydrocarbon of the present invention includes a dicyclopentadiene removal treatment step of removing dicyclopentadienes having a dicyclopentadiene skeleton from a feedstock oil which is a thermally-cracked heavy oil obtained from an apparatus for producing ethylene and which has a 90 volume % distillate temperature, as a distillation characteristic, of 390° C. or lower; and a cracking and reforming reaction step of obtaining a product containing an olefin and a monocyclic aromatic hydrocarbon by bringing the feedstock oil having a content of dicyclopentadienes adjusted to 10% by weight or less by treating a part or all of the feedstock oil through the dicyclopentadiene removal step into contact with a catalyst and reacting the feedstock oil.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: December 19, 2017
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Shinichiro Yanagawa, Masahide Kobayashi, Yukihiro Yoshiwara, Ryoji Ida
  • Patent number: 9840672
    Abstract: A method for producing a hydroisomerization catalyst includes a first step of preparing a support precursor by heating a mixture containing an ion-exchanged zeolite and a binder, the ion-exchanged zeolite being prepared by ion-exchanging an organic template-containing zeolite which contains an organic template and has a one-dimensional pore structure including a 10-membered ring in a solution containing ammonium ions and/or protons, at a temperature of 250 to 350° C. under N2 atmosphere, and a second step of preparing a hydroisomerization catalyst, which is prepared by calcining a catalyst precursor, the catalyst precursor being prepared based on the support precursor containing a platinum salt and/or a palladium salt, at a temperature of 350 to 400° C. in an atmosphere containing molecular oxygen, the hydroisomerization catalyst containing a support which includes a zeolite and carries platinum and/or palladium.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: December 12, 2017
    Assignee: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Yoshiyuki Nagayasu, Kazuaki Hayasaka, Mayumi Yokoi, Koshi Takahama
  • Patent number: 9839904
    Abstract: The present invention provides a method for producing a hydroprocessing catalyst including a supporting step of allowing a catalyst support having a content of a carbonaceous substance containing carbon atoms of 0.5% by mass or less in terms of carbon atoms to support an active metal component containing at least one active metal element selected from metals belonging to Group 6, Group 8, Group 9 and Group 10 in the periodic table, to obtain a catalyst precursor, and a calcining step of calcining the catalyst precursor obtained in the supporting step to obtain the hydroprocessing catalyst.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: December 12, 2017
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventor: Marie Iwama
  • Patent number: 9834737
    Abstract: The present invention provides a refrigerating machine oil composition comprising an ester-based base oil, an epoxy compound, and a carbodiimide compound, the refrigerating machine oil composition being used with a refrigerant containing a fluoropropene in a refrigerating machine comprising a member containing polyethylene terephthalate and/or a member containing hydrogenated acrylonitrile butadiene rubber.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: December 5, 2017
    Assignee: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Hitoshi Takahashi, Ken Sawada, Akira Tada, Souichirou Konno
  • Patent number: 9828309
    Abstract: Method for producing monocyclic aromatic hydrocarbons includes a cracking and reforming reaction step of obtaining products containing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms and a heavy fraction having 9 or more carbon atoms by bringing the feedstock oil into contact with a catalyst for producing monocyclic aromatic hydrocarbons containing crystalline aluminosilicate to cause a reaction, a catalyst separation step of separating and removing the catalyst for producing monocyclic aromatic hydrocarbons together with tricyclic aromatic hydrocarbons contained in the products from a mixture of the products and a small amount of the catalyst for producing monocyclic aromatic hydrocarbons carried by the products, both of which are derived in the cracking and reforming reaction step, and a purification and recovery step of purifying and recovering the monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms which are separated from the products formed in the cracking and reforming reaction step
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: November 28, 2017
    Assignees: JX Nippon Oil & Energy Corporation, CHIYODA CORPORATION
    Inventors: Shinichiro Yanagawa, Yuichiro Fujiyama, Yasuyuki Iwasa, Ryoji Ida, Masahide Kobayashi, Susumu Yasui, Yoshishige Sugi, Atsushi Fukui, Atsuro Nagumo
  • Patent number: 9827554
    Abstract: A process for producing a Fischer-Tropsch synthesis catalyst according to the present invention comprises a step of calcining a carrier precursor containing silica calcined at a temperature T1 and a zirconium compound at a temperature T2 to obtain a carrier; and a step of calcining a catalyst precursor containing the carrier and a cobalt compound and/or a ruthenium compound at a temperature T3, wherein the content of the zirconium compound in the carrier precursor is 0.01 to 7% by mass in terms of zirconium oxide based on the total mass of the catalyst, and T1, T2, and T3 satisfy conditions represented by expressions (1) to (3): T1?T3??(1) 250° C.?T2?450° C.??(2) 250° C.?T3?450° C.??(3).
    Type: Grant
    Filed: September 12, 2013
    Date of Patent: November 28, 2017
    Assignee: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Yoshiyuki Nagayasu, Kazuaki Hayasaka, Eri Kosaka, Koshi Takahama
  • Patent number: 9827558
    Abstract: A catalyst is provided for production of hydrocarbons including monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 and aliphatic hydrocarbons having a carbon number of 3 to 4 from feedstock in which a 10 vol % distillation temperature is 140° C. or higher and a 90 vol % distillation temperature is 380° C. or lower. The catalyst includes crystalline aluminosilicate including large-pore zeolite having a 12-membered ring structure.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: November 28, 2017
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Shinichiro Yanagawa, Masahide Kobayashi, Kazuaki Hayasaka
  • Patent number: 9823392
    Abstract: An optical substrate according to one embodiment includes a support substrate, and a projection-depression structure layer on a surface of which shapes of projections and depressions are formed, the projection-depression structure layer being laminated on the support substrate. The extending directions of projection portions contained in the projection-depression structure layer are irregularly distributed seen in planar view. An outline seen in planar view of a projection portion contained in a region per unit area of the projection-depression structure layer includes more straight line sections than curved line sections.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: November 21, 2017
    Assignee: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Satoshi Masuyama, Takashi Seki, Maki Fukuda, Suzushi Nishimura
  • Publication number: 20170327759
    Abstract: The present invention provides a refrigerating machine oil comprising, as a base oil, at least one oxygen-containing oil having a carbon/oxygen molar ratio of 2.5 or more and 5.8 or less, wherein the refrigerating machine oil is used with a refrigerant comprising 15% by mass or more of difluoromethane, 15% by mass or more of pentafluoroethane, 15% by mass or more of 2,3,3,3-tetrafluoropropene and 15% by mass or more of 1,1,1,2-tetrafluoroethane based on the total amount of the refrigerant.
    Type: Application
    Filed: September 24, 2015
    Publication date: November 16, 2017
    Applicant: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Hitoshi TAKAHASHI, Hiroko SHIMPO, Souichirou KONNO, Ken SAWADA, Kentaro YAMAGUCHI
  • Patent number: 9815750
    Abstract: A catalyst for producing monocyclic aromatic hydrocarbons, used for producing monocyclic aromatic hydrocarbons of 6 to 8 carbon number from a feedstock oil having a 10 volume % distillation temperature of at least 140° C. and an end point temperature of not more than 400° C., wherein the catalyst contains a crystalline aluminosilicate, gallium and/or zinc, and phosphorus, the molar ratio between silicon and aluminum (Si/Al ratio) in the crystalline aluminosilicate is not more than 100, the molar ratio between the phosphorus supported on the crystalline aluminosilicate and the aluminum of the crystalline aluminosilicate (P/Al ratio) is not less than 0.01 and not more than 1.0, and the amount of gallium and/or zinc is not more than 1.2% by mass based on the mass of the crystalline aluminosilicate.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: November 14, 2017
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Shinichiro Yanagawa, Masahide Kobayashi, Yuko Aoki, Kazuaki Hayasaka
  • Patent number: 9815047
    Abstract: The catalyst for producing aromatic hydrocarbon is for producing monocyclic aromatic hydrocarbon having 6 to 8 carbon number from oil feedstock having a 10 volume % distillation temperature of 140° C. or higher and a 90 volume % distillation temperature of 380° C. or lower and contains crystalline aluminosilicate and phosphorus. A molar ratio (P/Al ratio) between phosphorus contained in the crystalline aluminosilicate and aluminum of the crystalline aluminosilicate is from 0.1 to 1.0. The production method of monocyclic aromatic hydrocarbon is a method of bringing oil feedstock having a 10 volume % distillation temperature of 140° C. or higher and a 90 volume % distillation temperature of 380° C. or lower into contact with the catalyst for producing monocyclic aromatic hydrocarbon.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: November 14, 2017
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Shinichiro Yanagawa, Masahide Kobayashi, Yasuyuki Iwasa, Ryoji Ida
  • Patent number: 9809507
    Abstract: A catalyst for producing monocyclic aromatic hydrocarbons of 6 to 8 carbon number from a feedstock oil having a 10 volume % distillation temperature of at least 140° C. and an end point temperature of not more than 400° C., or a feedstock oil having a 10 volume % distillation temperature of at least 140° C. and a 90 volume % distillation temperature of not more than 360° C., wherein the catalyst contains a crystalline aluminosilicate, gallium and/or zinc, and phosphorus, and the amount of phosphorus supported on the crystalline aluminosilicate is within a range from 0.1 to 1.9% by mass based on the mass of the crystalline aluminosilicate; and a method for producing monocyclic aromatic hydrocarbons, the method involving bringing a feedstock oil having a 10 volume % distillation temperature of at least 140° C. and an end point temperature of not more than 400° C., or a feedstock oil having a 10 volume % distillation temperature of at least 140° C.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: November 7, 2017
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Shinichiro Yanagawa, Masahide Kobayashi, Yuko Aoki, Kazuaki Hayasaka