Patents Assigned to KLA-Tencor Technologies
  • Patent number: 11348222
    Abstract: Methods and systems for inspection of wafers and reticles using designer intent data are provided. One computer-implemented method includes identifying nuisance defects on a wafer based on inspection data produced by inspection of a reticle, which is used to form a pattern on the wafer prior to inspection of the wafer. Another computer-implemented method includes detecting defects on a wafer by analyzing data generated by inspection of the water in combination with data representative of a reticle, which includes designations identifying different types of portions of the reticle. An additional computer-implemented method includes determining a property of a manufacturing process used to process a wafer based on defects that alter a characteristic of a device formed on the wafer. Further computer-implemented methods include altering or simulating one or more characteristics of a design of an integrated circuit based on data generated by inspection of a wafer.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: May 31, 2022
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Paul Frank Marella, Sharon McCauley, Ellis Chang, William Volk, James Wiley, Sterling Watson, Sagar A. Kekare, Carl Hess
  • Patent number: 11204330
    Abstract: Systems and methods for inspection of a specimen are provided. One system includes an illumination subsystem configured to illuminate the specimen by scanning a spot across the specimen. The system also includes a non-imaging detection subsystem configured to generate output signals responsive to light specularly reflected from the spot scanned across the specimen. In addition, the system includes a processor configured to generate images of the specimen using the output signals and to detect defects on the specimen using the images. In one embodiment, the non-imaging detection subsystem includes an objective and a detector. An NA of the objective does not match a pixel size of the detector. In another embodiment, the non-imaging detection subsystem includes an objective having an NA of greater than about 0.05. The system may be configured for multi-spot illumination and multi-channel detection. Alternatively, the system may be configured for single spot illumination and multi-channel detection.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: December 21, 2021
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Mehdi Vaez-Iravani, Eliezer Rosengaus
  • Patent number: 10713771
    Abstract: Methods and systems for inspection of wafers and reticles using designer intent data are provided. One computer-implemented method includes identifying nuisance defects on a wafer based on inspection data produced by inspection of a reticle, which is used to form a pattern on the wafer prior to inspection of the wafer. Another computer-implemented method includes detecting defects on a wafer by analyzing data generated by inspection of the wafer in combination with data representative of a reticle, which includes designations identifying different types of portions of the reticle. An additional computer-implemented method includes determining a property of a manufacturing process used to process a wafer based on defects that alter a characteristic of a device formed on the wafer. Further computer-implemented methods include altering or simulating one or more characteristics of a design of an integrated circuit based on data generated by inspection of a wafer.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: July 14, 2020
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Paul Frank Marella, Sharon McCauley, Ellis Chang, William Volk, James Wiley, Sterling Watson, Sagar A. Kekare, Carl Hess
  • Patent number: 9401014
    Abstract: Various methods and systems for utilizing design data in combination with inspection data are provided. One computer-implemented method for binning defects detected on a wafer includes comparing portions of design data proximate positions of the defects in design data space. The method also includes determining if the design data in the portions is at least similar based on results of the comparing step. In addition, the method includes binning the defects in groups such that the portions of the design data proximate the positions of the defects in each of the groups are at least similar. The method further includes storing results of the binning step in a storage medium.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: July 26, 2016
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Khurram Zafar, Sagar Kekare, Ellis Chang, Allen Park, Peter Rose
  • Patent number: 9188974
    Abstract: Various computer-implemented methods are provided. One method includes determining errors across a field of a lens of a lithography system based on wafer measurements. In addition, the method includes separating the errors into correctable and non-correctable errors across the field. The errors may include dose errors, focus errors, or dose and focus errors. In another embodiment, the method may include determining correction terms for parameter(s) of the lithography system, which if applied to the parameter(s), the correctable errors would be eliminated resulting in approximately optimal imaging performance of the lithography system. Another method includes controlling one or more parameters of features within substantially an entire printed area on a product wafer using a limited number of wafer measurements performed on a test wafer. The wafer measurements may be performed on a first feature type, and the features that are controlled may include a second, different feature type.
    Type: Grant
    Filed: July 17, 2011
    Date of Patent: November 17, 2015
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Chris Mack, Moshe E Preil
  • Patent number: 9068917
    Abstract: Systems and methods for inspection of a specimen are provided. One system includes an illumination subsystem configured to illuminate the specimen by scanning a spot across the specimen. The system also includes a non-imaging detection subsystem configured to generate output signals responsive to light specularly reflected from the spot scanned across the specimen. In addition, the system includes a processor configured to generate images of the specimen using the output signals and to detect defects on the specimen using the images. In one embodiment, the non-imaging detection subsystem includes an objective and a detector. An NA of the objective does not match a pixel size of the detector. In another embodiment, the non-imaging detection subsystem includes an objective having an NA of greater than about 0.05. The system may be configured for multi-spot illumination and multi-channel detection. Alternatively, the system may be configured for single spot illumination and multi-channel detection.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: June 30, 2015
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Mehdi Vaez-Iravani, Eliezer Rosengaus
  • Patent number: 9052494
    Abstract: An optical system may include an objective having at least four mirrors including an outermost mirror with aspect ratio <20:1 and focusing optics including a refractive optical element. The objective provides imaging at numerical aperture >0.7, central obscuration <35% in pupil. An objective may have two or more mirrors, one with a refractive module that seals off an outermost mirror's central opening. A broad band imaging system may include one objective and two or more imaging paths that provide imaging at numerical aperture >0.7 and field of view >0.8 mm. An optical imaging system may comprise an objective and two or more imaging paths. The imaging paths may provide two or more simultaneous broadband images of a sample in two or more modes. The modes may have different illumination and/or collection pupil apertures or different pixel sizes at the sample.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: June 9, 2015
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Shiow-Hwei Hwang, Gregory L. Kirk, Hwan J. Jeong, David Shafer, Russel Hudyma
  • Patent number: 9053833
    Abstract: An array of spatially separated beamlets is produced by a corresponding array of charged particle emitters. Each emitter is at an electrostatic potential difference with respect to an immediately adjacent emitter in the array. The beamlets are converged laterally to form an charged particle beam. The beam is modulated longitudinally with infrared radiation to form a modulated beam. The charged particles in the modulated beam are bunched longitudinally to form a bunched beam. The bunched beam may be modulated with an undulator to generate a coherent radiation output. This abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: June 9, 2015
    Assignee: KLA-Tencor Technologies, Corporation
    Inventor: Tomas Plettner
  • Patent number: 9037280
    Abstract: Computer-implemented methods for performing one or more defect-related functions are provided. One method for identifying noise in inspection data includes identifying events detected in a number of sets of inspection data that is less than a predetermined number as noise. One method for binning defects includes binning the defects into groups based on defect characteristics and the sets of the inspection data in which the defects were detected. One method for selecting defects for defect analysis includes binning defects into group(s) based on proximity of the defects to each other and spatial signatures formed by the group(s). A different method for selecting defects for defect analysis includes selecting defects having the greatest diversity of defect characteristic(s) for defect analysis. One method includes classifying defects on a specimen using inspection data generated for the specimen combined with defect review data generated for the specimen.
    Type: Grant
    Filed: June 6, 2005
    Date of Patent: May 19, 2015
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Mark Dishner, Chris W. Lee, Sharon McCauley, Patrick Huet, David Wang
  • Patent number: 9002497
    Abstract: Methods and systems for inspection of wafers and reticles using designer intent data are provided. One computer-implemented method includes identifying nuisance defects on a wafer based on inspection data produced by inspection of a reticle, which is used to form a pattern on the wafer prior to inspection of the wafer. Another computer-implemented method includes detecting defects on a wafer by analyzing data generated by inspection of the wafer in combination with data representative of a reticle, which includes designations identifying different types of portions of the reticle. An additional computer-implemented method includes determining a property of a manufacturing process used to process a wafer based on defects that alter a characteristic of a device formed on the wafer. Further computer-implemented methods include altering or simulating one or more characteristics of a design of an integrated circuit based on data generated by inspection of a wafer.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: April 7, 2015
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: William Volk, James Wiley, Sterling Watson, Sagar A. Kekare, Carl Hess, Paul Frank Marella, Sharon McCauley, Ellis Chang
  • Patent number: 8923600
    Abstract: Various methods and systems for utilizing design data in combination with inspection data are provided. One computer-implemented method for binning defects detected on a wafer includes comparing portions of design data proximate positions of the defects in design data space. The method also includes determining if the design data in the portions is at least similar based on results of the comparing step. In addition, the method includes binning the defects in groups such that the portions of the design data proximate the positions of the defects in each of the groups are at least similar. The method further includes storing results of the binning step in a storage medium.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: December 30, 2014
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Khurram Zafar, Sagar Kekare, Ellis Chang, Allen Park, Peter Rose
  • Patent number: 8924014
    Abstract: A system having a beam for providing movement of a first stage and a second stage in a Y axis. The first stage receives a first substrate. A first motor provides movement for the first stage in an X axis. The second stage receives a second substrate. A second motor provides movement for the second stage in the X axis. The first stage and the second stage move together in the Y axis and independently in the X axis. A robot loads substrates onto the first stage and the second stage. A controller directs the robot to load a second substrate onto the second stage while simultaneously directing the first stage and the guide beam to scan a first substrate.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: December 30, 2014
    Assignee: KLA-Tencor Technologies, Inc.
    Inventor: Aviv Balan
  • Patent number: 8831767
    Abstract: Methods and systems for monitoring a parameter of a measurement device during polishing, damage to a specimen during polishing, a characteristic of a polishing pad, or a characteristic of a polishing tool are provided. One method includes scanning a specimen with a measurement device during polishing of a specimen to generate output signals at measurement spots on the specimen. The method also includes determining if the output signals are outside of a range of output signals. Output signals outside of the range may indicate that a parameter of the measurement device is out of control limits. In a different embodiment, output signals outside of the range may indicate damage to the specimen. Another method includes scanning a polishing pad with a measurement device to generate output signals at measurement spots on the polishing pad. The method also includes determining a characteristic of the polishing pad from the output signals.
    Type: Grant
    Filed: August 27, 2011
    Date of Patent: September 9, 2014
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Kurt Lehman, Charles Chen, Ronald L. Allen, Robert Shinagawa, Anantha Sethuraman, Christopher F. Bevis, Thanassis Trikas, Haiguang Chen, Ching Ling Meng
  • Patent number: 8768665
    Abstract: A method and system for modeling and analyzing wafer nanotopography data utilizes a nonlinear contact finite element model. Inputs to the model include lithography chuck parameters and site-based geometry data. Outputs from the model include in-plane distortions and out-of-plane distortions, from which defocus and overlay can be derived.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: July 1, 2014
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Sathish Veeraraghavan, Jaydeep Sinha
  • Patent number: 8765496
    Abstract: Methods and systems for measuring a characteristic of a substrate or preparing a substrate for analysis are provided. One method for measuring a characteristic of a substrate includes removing a portion of a feature on the substrate using an electron beam to expose a cross-sectional profile of a remaining portion of the feature. The feature may be a photoresist feature. The method also includes measuring a characteristic of the cross-sectional profile. A method for preparing a substrate for analysis includes removing a portion of a material on the substrate proximate to a defect using chemical etching in combination with an electron beam. The defect may be a subsurface defect or a partially subsurface defect. Another method for preparing a substrate for analysis includes removing a portion of a material on a substrate proximate to a defect using chemical etching in combination with an electron beam and a light beam.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: July 1, 2014
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Mehran Nasser-Ghodsi, Mark Borowicz, Dave Bakker, Mehdi Vaez-Iravani, Prashant Aji, Rudy Garcia, Tzu Chin Chuang
  • Patent number: 8611639
    Abstract: Various methods, carrier media, and systems for monitoring a characteristic of a specimen are provided. One computer-implemented method for monitoring a characteristic of a specimen includes determining a property of individual pixels on the specimen using output generated by inspecting the specimen with an inspection system. The method also includes determining a characteristic of individual regions on the specimen using the properties of the individual pixels in the individual regions. The method further includes monitoring the characteristic of the specimen based on the characteristics of the individual regions.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: December 17, 2013
    Assignee: KLA-Tencor Technologies Corp
    Inventors: Ashok Kulkarni, Chien-Huei (Adam) Chen, Cecelia Campochiaro, Richard Wallingford, Yong Zhang, Brian Duffy
  • Publication number: 20130314710
    Abstract: Methods and systems for monitoring semiconductor fabrication processes are provided. A system may include a stage configured to support a specimen and coupled to a measurement device. The measurement device may include an illumination system and a detection system. The illumination system and the detection system may be configured such that the system may be configured to determine multiple properties of the specimen. For example, the system may be configured to determine multiple properties of a specimen including: but not limited to, critical dimension and overlay misregistration; defects and thin film characteristics; critical dimension and defects; critical dimension and thin film characteristics; critical dimension, thin film characteristics and defects; macro defects and micro defects; flatness, thin film characteristics and defects; overlay misregistration and flatness; an implant characteristic and defects; and adhesion and thickness.
    Type: Application
    Filed: August 5, 2013
    Publication date: November 28, 2013
    Applicant: KLA-TENCOR TECHNOLOGIES CORPORATION
    Inventors: Ady Levy, Kyle A. Brown, Rodney Smedt, Gary Bultman, Mehrdad Nikoonahad, Dan Wack, John Fielden, Ibrahim Abdul-Halim
  • Publication number: 20130310966
    Abstract: A method and apparatus for process control in the processing of a substrate is disclosed in the present invention. Embodiments of the present invention utilize a first analysis tool to determine changes in a substrate's geometry. The substrate geometry data is used to generate sampling plan that will be used to check areas of the substrate that are likely to have errors after processing. The sampling plan is fed forwards to a second analysis tool that samples the substrate after it has been processed. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: May 18, 2012
    Publication date: November 21, 2013
    Applicant: KLA-Tencor Technologies Corporation
    Inventors: Craig W. MacNaughton, Jaydeep K. Sinha
  • Patent number: 8582094
    Abstract: Systems and methods for inspecting a specimen are provided. One system includes an illumination subsystem configured to direct light to the specimen at an oblique angle of incidence. The light is polarized in a plane that is substantially parallel to the plane of incidence. The system also includes a detection subsystem configured to detect light scattered from the specimen. The detected light is polarized in a plane that is substantially parallel to the plane of scattering. In addition, the system includes a processor configured to detect defects on the specimen using signals generated by the detection subsystem. In one embodiment, such a system may be configured to detect defects having a size that is less than half of a wavelength of the light directed to the specimen.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: November 12, 2013
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: David Shortt, Stephen Biellak, Christian Wolters
  • Patent number: 8532949
    Abstract: Various computer-implemented methods for classifying defects on a specimen are provided. One method includes assigning individual defects detected on the specimen to defect groups based on one or more characteristics of the individual defects. The method also includes displaying information about the defect groups to a user. In addition, the method includes allowing the user to assign a classification to each of the defect groups. Systems configured to classify defects on a specimen are also provided. One system includes program instructions executable on a processor for assigning individual defects detected on the specimen to defect groups based on one or more characteristics of the individual defects. The system also includes a user interface configured for displaying information about the defect groups to a user and allowing the user to assign a classification to each of the defect groups.
    Type: Grant
    Filed: October 12, 2005
    Date of Patent: September 10, 2013
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Cho Huak Teh, Tommaso Torelli, Dominic David, Chiuman Yeung, Michael Gordon Scott, Lalita A. Balasubramanian, Lisheng Gao, Tong Huang, Jianxin Zhang, Michal Kowalski, Jonathan Oakley