Patents Assigned to Kingston Technology Corp.
  • Publication number: 20110298486
    Abstract: A parking-structure test system has motherboards that test memory modules. The motherboards are not stationary but are placed inside movable trays that move along conveyors. An unloader removes tested memory modules from test sockets on the motherboards, and a loader inserts untested memory modules into the motherboards using a robotic arm. A conveyor carries the motherboards from the loader to a parking and testing structure. An elevator raises or lowers the motherboards to different parking levels in the parking and testing structure. The motherboards move from the elevator to test stations on the parking level. A retractable connector from the test station makes contact with a motherboard connector to power up the motherboard, which then tests the memory modules. Test results are communicated from the test station to a host controller, which instructs the loader-unloader to sort the tested memory modules once the motherboard returns via the elevator and conveyors.
    Type: Application
    Filed: August 15, 2011
    Publication date: December 8, 2011
    Applicant: KINGSTON TECHNOLOGY CORP.
    Inventors: Ramon S. Co, Kevin J. Sun
  • Publication number: 20110300752
    Abstract: A thumb drive with a miniaturized memory storage assembly package that employs an extended chassis structure to support the miniaturized memory device within an ergonomically designed casing that is also simple to manufacture. The miniaturized memory storage assembly has a flexible latch projection extending from its side that mates with a complimentary latch aperture in the side of the connector housing. Downwardly projecting tongues in the top surface of the connector housing also prevent movement of the assembly within the housing. The elongated platform chassis extending rearwardly from the USB connector housing snaps in place in an ergonomically designed thumb drive case.
    Type: Application
    Filed: January 11, 2011
    Publication date: December 8, 2011
    Applicant: KINGSTON TECHNOLOGY CORP.
    Inventors: Peter Lee Kuo Chou, Shing Kuo Tarn, John Pei Ho
  • Patent number: 8035408
    Abstract: A memory module test socket can accept modules with bent or warped printed-circuit boards (PCBs). A support plate is mounted above a Personal Computer (PC) motherboard by standoffs. An extender card fits through a slot in the support plate. The bottom edge of the extender card is plugged into a motherboard memory module socket on the motherboard. The top of the extender card has an extender socket that sits atop the support plate. End guides are mounted to the support plate and clamp down the extender socket. Funnel guides formed in the end guides have a funnel shape to guide ends of a memory module for better alignment when inserted into the extender socket. A pusher plate with a triangular guide or a perpendicular rod applies a perpendicular force on the middle of a warped memory module to align the middle to the extender socket during insertion.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: October 11, 2011
    Assignee: Kingston Technology Corp.
    Inventor: Ramon S. Co
  • Patent number: 8022720
    Abstract: A parking-structure test system has motherboards that test memory modules. The motherboards are not stationary but are placed inside movable trays that move along conveyors. An unloader removes tested memory modules from test sockets on the motherboards, and a loader inserts untested memory modules into the motherboards using a robotic arm. A conveyor carries the motherboards from the loader to a parking and testing structure. An elevator raises or lowers the motherboards to different parking levels in the parking and testing structure. The motherboards move from the elevator to test stations on the parking level. A retractable connector from the test station makes contact with a motherboard connector to power up the motherboard, which then tests the memory modules. Test results are communicated from the test station to a host controller, which instructs the loader-unloader to sort the tested memory modules once the motherboard returns via the elevator and conveyors.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: September 20, 2011
    Assignee: Kingston Technology Corp.
    Inventors: Ramon S. Co, Kevin J. Sun
  • Patent number: 8022721
    Abstract: A conveyor-stack test system has motherboards that test memory modules. The motherboards are not stationary but are placed inside movable trays that move along conveyors. A loader-unloader removes tested memory modules from test sockets on the motherboards and inserts untested memory modules into the motherboards using a robotic arm. A conveyor carries the motherboards from the loader-unloader to an elevator. The elevator raises or lowers the motherboards to different levels in a conveyor stack with multiple levels of conveyors each with many test stations. The motherboards move along conveyors in the conveyor stack until reaching test stations. A retractable connector from the test station extends to make contact with a motherboard connector to power up the motherboard, which then tests the memory modules. Test results are communicated from the test station to a host controller, which instructs the loader-unloader to sort the tested memory modules once the motherboard returns.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: September 20, 2011
    Assignee: Kingston Technology Corp.
    Inventors: Ramon S. Co, Kevin J. Sun
  • Publication number: 20110193585
    Abstract: A conveyor-stack test system has motherboards that test memory modules. The motherboards are not stationary but are placed inside movable trays that move along conveyors. A loader-unloader removes tested memory modules from test sockets on the motherboards and inserts untested memory modules into the motherboards using a robotic arm. A conveyor carries the motherboards from the loader-unloader to an elevator. The elevator raises or lowers the motherboards to different levels in a conveyor stack with multiple levels of conveyors each with many test stations. The motherboards move along conveyors in the conveyor stack until reaching test stations. A retractable connector from the test station extends to make contact with a motherboard connector to power up the motherboard, which then tests the memory modules. Test results are communicated from the test station to a host controller, which instructs the loader-unloader to sort the tested memory modules once the motherboard returns.
    Type: Application
    Filed: April 18, 2011
    Publication date: August 11, 2011
    Applicant: KINGSTON TECHNOLOGY CORP.
    Inventors: Ramon S. Co, Kevin J. Sun
  • Patent number: 7960992
    Abstract: A conveyor-stack test system has motherboards that test memory modules. The motherboards are not stationary but are placed inside movable trays that move along conveyors. A loader-unloader removes tested memory modules from test sockets on the motherboards and inserts untested memory modules into the motherboards using a robotic arm. A conveyor carries the motherboards from the loader-unloader to an elevator. The elevator raises or lowers the motherboards to different levels in a conveyor stack with multiple levels of conveyors each with many test stations. The motherboards move along conveyors in the conveyor stack until reaching test stations. A retractable connector from the test station extends to make contact with a motherboard connector to power up the motherboard, which then tests the memory modules. Test results are communicated from the test station to a host controller, which instructs the loader-unloader to sort the tested memory modules once the motherboard returns.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: June 14, 2011
    Assignee: Kingston Technology Corp.
    Inventors: Ramon S. Co, Kevin J. Sun
  • Patent number: 7917327
    Abstract: Two robotic arms roam in separate, non-overlapping areas of a test station, avoiding collisions. A traveling buffer moves along x-tracks between a front position and a back position. In the front position, a first robotic arm loads IC chips from an input tray or stacker into buffer cavities in the traveling buffer. The traveling buffer then moves along the x-tracks to the back position, where a second robotic arm moves chips from the traveling buffer to test boards for testing. After testing, the second robotic arm moves chips to a second traveling buffer, which then moves along tracks to a front position for unloading by the first robotic arm. Two traveling buffers may move on the same tracks in a loop. The buffer cavities in the traveling buffer move on internal tracks to expand and contract spacing and pitch between the front and back positions to match test-board pitch.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: March 29, 2011
    Assignee: Kingston Technology Corp.
    Inventors: Ramon S. Co, Tat Leung Lai, Calvin G. Leong
  • Publication number: 20110050268
    Abstract: A parking-structure test system has motherboards that test memory modules. The motherboards are not stationary but are placed inside movable trays that move along conveyors. An unloader removes tested memory modules from test sockets on the motherboards, and a loader inserts untested memory modules into the motherboards using a robotic arm. A conveyor carries the motherboards from the loader to a parking and testing structure. An elevator raises or lowers the motherboards to different parking levels in the parking and testing structure. The motherboards move from the elevator to test stations on the parking level. A retractable connector from the test station makes contact with a motherboard connector to power up the motherboard, which then tests the memory modules. Test results are communicated from the test station to a host controller, which instructs the loader-unloader to sort the tested memory modules once the motherboard returns via the elevator and conveyors.
    Type: Application
    Filed: November 8, 2010
    Publication date: March 3, 2011
    Applicant: KINGSTON TECHNOLOGY CORP.
    Inventors: Ramon S. Co, Kevin J. Sun
  • Patent number: 7884631
    Abstract: A parking-structure test system has motherboards that test memory modules. The motherboards are not stationary but are placed inside movable trays that move along conveyors. An unloader removes tested memory modules from test sockets on the motherboards, and a loader inserts untested memory modules into the motherboards using a robotic arm. A conveyor carries the motherboards from the loader to a parking and testing structure. An elevator raises or lowers the motherboards to different parking levels in the parking and testing structure. The motherboards move from the elevator to test stations on the parking level. A retractable connector from the test station makes contact with a motherboard connector to power up the motherboard, which then tests the memory modules. Test results are communicated from the test station to a host controller, which instructs the loader-unloader to sort the tested memory modules once the motherboard returns via the elevator and conveyors.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: February 8, 2011
    Assignee: Kingston Technology Corp.
    Inventors: Ramon S. Co, Kevin J. Sun
  • Publication number: 20100274517
    Abstract: Two robotic arms roam in separate, non-overlapping areas of a test station, avoiding collisions. A traveling buffer moves along x-tracks between a front position and a back position. In the front position, a first robotic arm loads IC chips from an input tray or stacker into buffer cavities in the traveling buffer. The traveling buffer then moves along the x-tracks to the back position, where a second robotic arm moves chips from the traveling buffer to test boards for testing. After testing, the second robotic arm moves chips to a second traveling buffer, which then moves along tracks to a front position for unloading by the first robotic arm. Two traveling buffers may move on the same tracks in a loop. The buffer cavities in the traveling buffer move on internal tracks to expand and contract spacing and pitch between the front and back positions to match test-board pitch.
    Type: Application
    Filed: July 7, 2010
    Publication date: October 28, 2010
    Applicant: KINGSTON TECHNOLOGY CORP.
    Inventors: Ramon S. Co, Tat Leung Lai, Calvin G. Leong
  • Patent number: 7797578
    Abstract: A standard memory module socket is removed from a target DRAM module slot on the component side and the test adaptor board connects to the target DRAM module slot on the reverse (solder) side of a personal computer motherboard, or an extender card may be used. The target DRAM module slot is a middle slot, such as the second or third of four DRAM module slots. The first and fourth DRAM module slots are populated with known good memory modules storing the BIOS at a high address and an operating system image and a test program at a low address. The test program accesses a memory chip in a test socket on a test adaptor board that is connected to the target DRAM module slot to locate defects. The motherboard does not crash since the BIOS, OS image, and test program are not stored in the memory chip under test.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: September 14, 2010
    Assignee: Kingston Technology Corp.
    Inventor: Ramon S. Co
  • Patent number: 7797583
    Abstract: A test adaptor board connects to a personal computer (PC) motherboard that tests a memory module in a test socket. A standard memory module socket is removed from a target DRAM module slot on the component side and the test adaptor board connects to the target DRAM module slot on the reverse (solder) side of the motherboard. The target DRAM module slot is a middle slot, such as the second or third of four DRAM module slots. The first and fourth DRAM module slots are populated with known good memory modules storing the BIOS at a high address and an operating system image and a test program at a low address. The test program accesses a memory module in the test socket to locate defects. The motherboard does not crash since the BIOS, OS image, and test program are not stored in the memory module under test.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: September 14, 2010
    Assignee: Kingston Technology Corp.
    Inventor: Ramon S. Co
  • Publication number: 20100218050
    Abstract: A parking-structure test system has motherboards that test memory modules. The motherboards are not stationary but are placed inside movable trays that move along conveyors. An unloader removes tested memory modules from test sockets on the motherboards, and a loader inserts untested memory modules into the motherboards using a robotic arm. A conveyor carries the motherboards from the loader to a parking and testing structure. An elevator raises or lowers the motherboards to different parking levels in the parking and testing structure. The motherboards move from the elevator to test stations on the parking level. A retractable connector from the test station makes contact with a motherboard connector to power up the motherboard, which then tests the memory modules. Test results are communicated from the test station to a host controller, which instructs the loader-unloader to sort the tested memory modules once the motherboard returns via the elevator and conveyors.
    Type: Application
    Filed: February 25, 2009
    Publication date: August 26, 2010
    Applicant: KINGSTON TECHNOLOGY CORP.
    Inventors: Ramon S. Co, Kevin J. Sun
  • Publication number: 20100213027
    Abstract: A conveyor-stack test system has motherboards that test memory modules. The motherboards are not stationary but are placed inside movable trays that move along conveyors. A loader-unloader removes tested memory modules from test sockets on the motherboards and inserts untested memory modules into the motherboards using a robotic arm. A conveyor carries the motherboards from the loader-unloader to an elevator. The elevator raises or lowers the motherboards to different levels in a conveyor stack with multiple levels of conveyors each with many test stations. The motherboards move along conveyors in the conveyor stack until reaching test stations. A retractable connector from the test station extends to make contact with a motherboard connector to power up the motherboard, which then tests the memory modules. Test results are communicated from the test station to a host controller, which instructs the loader-unloader to sort the tested memory modules once the motherboard returns.
    Type: Application
    Filed: February 25, 2009
    Publication date: August 26, 2010
    Applicant: KINGSTON TECHNOLOGY CORP.
    Inventors: Ramon S. Co, Kevin J. Sun
  • Patent number: 7783447
    Abstract: Two robotic arms roam in separate, non-overlapping areas of a test station, avoiding collisions. A traveling buffer moves along x-tracks between a front position and a back position. In the front position, a first robotic arm loads IC chips from an input tray or stacker into buffer cavities in the traveling buffer. The traveling buffer then moves along the x-tracks to the back position, where a second robotic arm moves chips from the traveling buffer to test boards for testing. After testing, the second robotic arm moves chips to a second traveling buffer, which then moves along tracks to a front position for unloading by the first robotic arm. Two traveling buffers may move on the same tracks in a loop. The buffer cavities in the traveling buffer move on internal tracks to expand and contract spacing and pitch between the front and back positions to match test-board pitch.
    Type: Grant
    Filed: November 24, 2007
    Date of Patent: August 24, 2010
    Assignee: Kingston Technology Corp.
    Inventors: Ramon S. Co, Tat Leung Lai, Calvin G. Leong
  • Patent number: 7688929
    Abstract: Multi-phase clocks are used to encode and decode signals that are phase-modulated. The input signal is phase-compared with a feedback clock. Phase differences increment or decrement an up/down counter. The count value from the up/down counter is applied to a phase rotator, which selects one clock phase from a bank of multi-phase clocks. The multi-phase clocks have the same frequency, but are offset in phase from each other. An output divider divides the selected multi-phase clock to generate a phase-modulated output. A feedback divider divides a fixed-phase clock from the multi-phase clocks to generate the feedback clock. An analog or a digital front-end may be used to convert analog inputs to digital signals to increment or decrement the counter, or to encode multiple digital bits as phase assignments. For a de-modulator, a digital-to-analog converter (DAC) or a digital decoder produces the final output from the count of the up/down counter.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: March 30, 2010
    Assignee: Kingston Technology Corp.
    Inventor: Ramon S. Co
  • Patent number: 7642105
    Abstract: A manufacturing method makes memory modules from partially-good DRAM chips soldered to its substrate. The partially-good DRAM chips have a number of defective memory cells that is below a test threshold, such as 10%. Packaged DRAM chips are optionally pre-screened and considered to pass when the number of defects found is less than the test threshold. A defect table is created during testing and written to a serial-presence-detect electrically-erasable read-only memory (SPD-EEPROM) on the memory module. The memory module is finally tested on a target-system tester that reads the defect table during booting, and redirects memory access to defective memory locations identified by the defect table. The memory modules may be burned in or tested at various temperatures and voltages to increase reliability.
    Type: Grant
    Filed: November 23, 2007
    Date of Patent: January 5, 2010
    Assignee: Kingston Technology Corp.
    Inventors: Ramon S. Co, Mike Chen, David Sun
  • Publication number: 20090301909
    Abstract: A multi-standard flash-memory-card carrier is about the same size as a thick credit card and fits into a wallet. The multi-standard flash-memory-card carrier has bays that accept flash-memory cards. Larger bays on one side receive SD cards and a Memory Stick Duo card, while micro bays on another side of the carrier receive microSD cards and Memory Stick Micro cards. A carrier spine sandwiched between top and bottom covers has openings forming the bays. Spring-clip tabs on spring-clip fingers fit into notches on the side of the flash-memory cards to secure the flash-memory cards into the multi-standard flash-memory-card carrier to prevent loss. The spring-clip fingers are movable parts of the carrier spine that are deformed during insertion of the flash-memory cards. Both micro and standard flash-memory cards can be carried in the same multi-standard flash-memory-card carrier that can be placed in plastic sleeves for credit cards in a person's wallet.
    Type: Application
    Filed: June 5, 2008
    Publication date: December 10, 2009
    Applicant: KINGSTON TECHNOLOGY CORP.
    Inventors: Choon Tak Tang, George K.L. SHIU
  • Patent number: 7619938
    Abstract: A repairing fully-buffered memory module can have memory chips with some defects such as single-bit errors. A repair controller is added to the Advanced Memory Buffer (AMB) on the memory module. The AMB fully buffers memory requests that are sent as serial packets over southbound lanes from a host. Memory-access addresses are extracted from the serial packets by the AMB. The repair controller compares the memory-access addresses to repair addresses and diverts access from defective memory chips to a spare memory for the repair addresses. The repair addresses can be located during testing of the memory module and programmed into a repair address buffer on the AMB. The repair addresses could be first programmed into a serial-presence-detect electrically-erasable programmable read-only memory (SPD-EEPROM) on the memory module, and then copied to the repair address buffer on the AMB during power-up.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: November 17, 2009
    Assignee: Kingston Technology Corp.
    Inventors: Ramon S. Co, David Sun