Patents Assigned to KLA-Tencor Corporation
  • Patent number: 11955391
    Abstract: Methods and systems for estimating values of process parameters, structural parameters, or both, based on x-ray scatterometry measurements of high aspect ratio semiconductor structures are presented herein. X-ray scatterometry measurements are performed at one or more steps of a fabrication process flow. The measurements are performed quickly and with sufficient accuracy to enable yield improvement of an on-going semiconductor fabrication process flow. Process corrections are determined based on the measured values of parameters of interest and the corrections are communicated to the process tool to change one or more process control parameters of the process tool. In some examples, measurements are performed while the wafer is being processed to control the on-going fabrication process step. In some examples, X-ray scatterometry measurements are performed after a particular process step and process control parameters are updated for processing of future devices.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: April 9, 2024
    Assignee: KLA-Tencor Corporation
    Inventors: Antonio Arion Gellineau, Thaddeus Gerard Dziura
  • Patent number: 11815347
    Abstract: Systems and methods are provided which utilize optical microcavity probes to map wafer topography by near-field interactions therebetween in a manner which complies with high volume metrology requirements. The optical microcavity probes detect features on a wafer by shifts in an interference signal between reference radiation and near-field interactions of radiation in the microcavities and wafer features, such as device features and metrology target features. Various illumination and detection configurations provide quick and sensitive signals which are used to enhance optical metrology measurements with respect to their accuracy and sensitivity. The optical microcavity probes may be scanned at a controlled height and position with respect to the wafer and provide information concerning the spatial relations between device and target features.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: November 14, 2023
    Assignee: KLA-Tencor Corporation
    Inventors: Yuri Paskover, Amnon Manassen, Vladimir Levinski
  • Patent number: 11784097
    Abstract: A method and system for measuring overlay in a semiconductor manufacturing process comprise capturing an image of a feature in an article at a predetermined manufacturing stage, deriving a quantity of an image parameter from the image and converting the quantity into an overlay measurement. The conversion is by reference to an image parameter quantity derived from a reference image of a feature at the same predetermined manufacturing stage with known overlay (“OVL”). There is also disclosed a method of determining a device inspection recipe for use by an inspection tool comprising identifying device patterns as candidate device care areas that may be sensitive to OVL, deriving an OVL response for each identified pattern, correlating the OVL response with measured OVL, and selecting some or all of the device patterns as device care areas based on the correlation.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: October 10, 2023
    Assignee: KLA-TENCOR CORPORATION
    Inventors: Choon Hoong Hoo, Fangren Ji, Amnon Manassen, Liran Yerushalmi, Antonio Mani, Allen Park, Stilian Pandev, Andrei Shchegrov, Jon Madsen
  • Patent number: 11709433
    Abstract: Metrology targets, production processes and optical systems are provided, which enable metrology of device-like targets. Supplementary structure(s) may be introduced in the target to interact optically with the bottom layer and/or with the top layer of the target and target cells configurations enable deriving measurements of device-characteristic features. For example, supplementary structure(s) may be designed to yield Moiré patterns with one or both layers, and metrology parameters may be derived from these patterns. Device production processes were adapted to enable production of corresponding targets, which may be measured by standard or by provided modified optical systems, configured to enable phase measurements of the Moiré patterns.
    Type: Grant
    Filed: March 8, 2022
    Date of Patent: July 25, 2023
    Assignee: KLA-Tencor Corporation
    Inventors: Vladimir Levinski, Amnon Manassen, Eran Amit, Nuriel Amir, Liran Yerushalmi, Amit Shaked
  • Patent number: 11694327
    Abstract: Common events between layers on a semiconductor wafer are filtered. Common events should contain the majority of defects of interest. Only nuisance events that are common between layers on the semiconductor wafer remain, which reduces the nuisance rate. Defects that are common across layers can be filtered based on, for example, defect coordinates, a difference image, or defect attributes.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: July 4, 2023
    Assignee: KLA-TENCOR CORPORATION
    Inventor: Bjorn Brauer
  • Patent number: 11555689
    Abstract: Methods and systems disclosed herein can measure thin film stacks, such as film on grating and bandgap on grating in semiconductors. For example, the thin film stack may be a 1D film stack, a 2D film on grating, or a 3D film on grating. One or more effective medium dispersion models are created for the film stack. Each effective medium dispersion model can substitute for one or more layers. A thickness of one or more layers can be determined using the effective medium dispersion based scatterometry model. In an instance, three effective medium dispersion based scatterometry models are developed and used to determine thickness of three layers in a film stack.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: January 17, 2023
    Assignee: KLA-Tencor Corporation
    Inventors: Houssam Chouaib, Zhengquan Tan
  • Patent number: 11551980
    Abstract: A dynamic misregistration measurement amelioration method including taking at least one misregistration measurement at multiple sites on a first semiconductor device wafer, which is selected from a batch of semiconductor device wafers intended to be identical, analyzing each of the misregistration measurements, using data from the analysis of each of the misregistration measurements to determine ameliorated misregistration measurement parameters at each one of the multiple sites, thereafter ameliorating misregistration metrology tool setup for ameliorated misregistration measurement at the each one of the multiple sites, thereby generating an ameliorated misregistration metrology tool setup and thereafter measuring misregistration at multiple sites on a second semiconductor device wafer, which is selected from the batch of semiconductor device wafers intended to be identical, using the ameliorated misregistration metrology tool setup.
    Type: Grant
    Filed: May 19, 2019
    Date of Patent: January 10, 2023
    Assignee: KLA-TENCOR CORPORATION
    Inventors: Roie Volkovich, Anna Golotsvan, Eyal Abend
  • Patent number: 11536940
    Abstract: A three-dimensional (3D) microscope includes various insertable components that facilitate multiple imaging and measurement capabilities. These capabilities include Nomarski imaging, polarized light imaging, quantitative differential interference contrast (q-DIC) imaging, motorized polarized light imaging, phase-shifting interferometry (PSI), and vertical-scanning interferometry (VSI).
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: December 27, 2022
    Assignee: KLA-Tencor Corporation
    Inventors: James Jianguo Xu, Ken Kinsun Lee, Rusmin Kudinar, Ronny Soetarman, Hung Phi Nguyen, Zhen Hou
  • Patent number: 11537837
    Abstract: Techniques and systems for critical dimension metrology are disclosed. Critical parameters can be constrained with at least one floating parameter and one or more weight coefficients. A neural network is trained to use a model that includes a Jacobian matrix. During training, at least one of the weight coefficients is adjusted, a regression is performed on reference spectra, and a root-mean-square error between the critical parameters and the reference spectra is determined. The training may be repeated until the root-mean-square error is less than a convergence threshold.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: December 27, 2022
    Assignee: KLA-TENCOR CORPORATION
    Inventors: Yuerui Chen, Xin Li
  • Patent number: 11537043
    Abstract: Metrology methods and targets are provided for reducing or eliminating a difference between a device pattern position and a target pattern position while maintaining target printability, process compatibility and optical contrast—in both imaging and scatterometry metrology. Pattern placement discrepancies may be reduced by using sub-resolved assist features in the mask design which have a same periodicity (fine pitch) as the periodic structure and/or by calibrating the measurement results using PPE (pattern placement error) correction factors derived by applying learning procedures to specific calibration terms, in measurements and/or simulations. Metrology targets are disclosed with multiple periodic structures at the same layer (in addition to regular target structures), e.g., in one or two layers, which are used to calibrate and remove PPE, especially when related to asymmetric effects such as scanner aberrations, off-axis illumination and other error sources.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: December 27, 2022
    Assignee: KLA-TENCOR CORPORATION
    Inventors: Yoel Feler, Vladimir Levinski, Roel Gronheid, Sharon Aharon, Evgeni Gurevich, Anna Golotsvan, Mark Ghinovker
  • Patent number: 11519869
    Abstract: Methods and systems for improving a measurement recipe describing a sequence of measurements employed to characterize semiconductor structures are described herein. A measurement recipe is repeatedly updated before a queue of measurements defined by the previous measurement recipe is fully executed. In some examples, an improved measurement recipe identifies a minimum set of measurement options that increases wafer throughput while meeting measurement uncertainty requirements. In some examples, measurement recipe optimization is controlled to trade off measurement robustness and measurement time. This enables flexibility in the case of outliers and process excursions. In some examples, measurement recipe optimization is controlled to minimize any combination of measurement uncertainty, measurement time, move time, and target dose. In some examples, a measurement recipe is updated while measurement data is being collected.
    Type: Grant
    Filed: February 16, 2019
    Date of Patent: December 6, 2022
    Assignee: KLA Tencor Corporation
    Inventor: Antonio Arion Gellineau
  • Patent number: 11519719
    Abstract: Methods and systems for characterizing dimensions and material properties of semiconductor devices by transmission small angle x-ray scatterometry (TSAXS) systems having relatively small tool footprint are described herein. The methods and systems described herein enable Q space resolution adequate for metrology of semiconductor structures with reduced optical path length. In general, the x-ray beam is focused closer to the wafer surface for relatively small targets and closer to the detector for relatively large targets. In some embodiments, a high resolution detector with small point spread function (PSF) is employed to mitigate detector PSF limits on achievable Q resolution. In some embodiments, the detector locates an incident photon with sub-pixel accuracy by determining the centroid of a cloud of electrons stimulated by the photon conversion event. In some embodiments, the detector resolves one or more x-ray photon energies in addition to location of incidence.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: December 6, 2022
    Assignee: KLA-Tencor Corporation
    Inventors: Andrei V. Shchegrov, Antonio Arion Gellineau, Sergey Zalubovsky
  • Patent number: 11514357
    Abstract: A method of defect discovery can include providing a nuisance bin in a nuisance filter, partitioning the defect population into a defect population partition, segmenting the defect population partition into a defect population segment, selecting from the defect population segment a selected set of defects, computing one or more statistics of the signal attributes of the defects in the defect population segment, replicating the selected set of defects to yield generated defects, shifting the generated defects outside of the defect population segment, creating a training set, and training a binary classifier. This method can be operated on a system. The method can enable a semiconductor manufacturer to determine more accurately the presence of defects that would otherwise have gone unnoticed.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: November 29, 2022
    Assignee: KLA-TENCOR CORPORATION
    Inventor: Martin Plihal
  • Patent number: 11456194
    Abstract: A high-dimensional variable selection unit determines a list of critical parameters from sensor data and parametric tool measurements from a semiconductor manufacturing tool, such as a semiconductor inspection tool or other types of semiconductor manufacturing tools. The high-dimensional variable selection model can be, for example, elastic net, forward-stagewise regression, or least angle regression. The list of critical parameters may be used to design a next generation semiconductor manufacturing tool, to bring the semiconductor manufacturing tool back to a normal status, to match a semiconductor manufacturing tool's results with that of another semiconductor manufacturing tool, or to develop a specification for the semiconductor manufacturing tool.
    Type: Grant
    Filed: June 23, 2019
    Date of Patent: September 27, 2022
    Assignee: KLA-TENCOR CORPORATION
    Inventors: Wei Chang, Joseph Gutierrez, Krishna Rao
  • Patent number: 11430687
    Abstract: A vacuum hold-down apparatus retains a wafer in a desired position and orientation. A vacuum chuck assembly of the vacuum hold-down apparatus has a vacuum chuck surface with a vacuum communication aperture. A venturi vacuum generator is fixed with respect to the vacuum chuck assembly and communicates with the vacuum chuck surface via the vacuum communication aperture. A positive pressure fluid line communicates with the venturi vacuum generator.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: August 30, 2022
    Assignee: KLA-TENCOR CORPORATION
    Inventors: Ariel Hildesheim, Ofer Angel
  • Patent number: 11380594
    Abstract: Machine learning techniques are used to predict values of fixed parameters when given reference values of critical parameters. For example, a neural network can be trained based on one or more critical parameters and a low-dimensional real-valued vector associated with a spectrum, such as a spectroscopic ellipsometry spectrum or a specular reflectance spectrum. Another neural network can map the low-dimensional real-valued vector. When using two neural networks, one neural network can be trained to map the spectra to the low-dimensional real-valued vector. Another neural network can be trained to predict the fixed parameter based on the critical parameters and the low-dimensional real-valued vector from the other neural network.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: July 5, 2022
    Assignee: KLA-TENCOR CORPORATION
    Inventors: Tianrong Zhan, Yin Xu, Liequan Lee
  • Patent number: 11366069
    Abstract: Disclosed is apparatus for inspecting a sample. The apparatus includes illumination optics for simultaneously directing a plurality of incident beams at a plurality of azimuth angles towards a sample and collection optics for directing a plurality of field portions of output light from two or more of the plurality of angles towards two or more corresponding sensors. The two or more sensors are arranged for receiving the field portions corresponding to two or more angles and generating two or more corresponding images. The apparatus further comprises a processor for analyzing the two or more images to detect defects on the sample.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: June 21, 2022
    Assignee: KLA-TENCOR CORPORATION
    Inventors: Guoheng Zhao, Sheng Liu, Ben-Ming Benjamin Tsai
  • Patent number: 11353493
    Abstract: A data-driven misregistration parameter configuration and measurement system and method including simulating a plurality of measurement simulations of at least one multilayered semiconductor device, selected from a batch of multilayered semiconductor devices intended to be identical, using sets of measurement parameter configurations, generating simulation data for the device, identifying recommended measurement parameter configurations selected from sets of measurement parameter configurations, providing a multilayered semiconductor device selected from the batch, providing the at least one recommended set of measurement parameter configurations to a misregistration metrology tool having multiple possible sets of measurement parameter configurations, measuring at least one multilayered semiconductor device, selected from the batch, using the recommended set, thereby generating measurement data for the device, thereafter identifying a final recommended set of measurement parameter configurations and measuring
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: June 7, 2022
    Assignee: KLA-TENCOR CORPORATION
    Inventors: Shlomit Katz, Roie Volkovich, Anna Golotsvan, Raviv Yohanan
  • Patent number: 11333621
    Abstract: Methods and systems for performing measurements of semiconductor structures based on high-brightness, polychromatic, reflective small angle x-ray scatterometry (RSAXS) metrology are presented herein. RSAXS measurements are performed over a range of wavelengths, angles of incidence, and azimuth angles with small illumination beam spot size, simultaneously or sequentially. In some embodiments, RSAXS measurements are performed with x-ray radiation in the soft x-ray (SXR) region at grazing angles of incidence in the range of 5-20 degrees. In some embodiments, the x-ray illumination source size is 10 micrometers or less, and focusing optics project the source area onto a wafer with a demagnification factor of 0.2 or less, enabling an incident x-ray illumination spot size of less than two micrometers.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: May 17, 2022
    Assignee: KLA-Tencor Corporation
    Inventors: Daniel Wack, Oleg Khodykin, Andrei V. Shchegrov, Alexander Kuznetsov, Nikolay Artemiev, Michael Friedmann
  • Patent number: 11314173
    Abstract: Metrology tools and methods are provided, which estimate the effect of topographic phases corresponding to different diffraction orders, which result from light scattering on periodic targets, and adjust the measurement conditions to improve measurement accuracy. In imaging, overlay error magnification may be reduced by choosing appropriate measurement conditions based on analysis of contrast function behavior, changing illumination conditions (reducing spectrum width and illumination NA), using polarizing targets and/or optical systems, using multiple defocusing positions etc. On-the-fly calibration of measurement results may be carried out in imaging or scatterometry using additional measurements or additional target cells.
    Type: Grant
    Filed: November 3, 2019
    Date of Patent: April 26, 2022
    Assignee: KLA-Tencor Corporation
    Inventors: Vladimir Levinski, Yuri Paskover, Amnon Manassen, Yoni Shalibo