Patents Assigned to Koslow Technologies Corporation
  • Publication number: 20140191444
    Abstract: An apparatus for extruding a block product from a feed material. A barrel includes an output end. A screw is at least partially disposed within the barrel. The screw flows the feed material in the barrel towards the output end. A die is in fluid communication with the output end of the barrel. The die receives the feed material and heats the feed material to produce the block product. At least one electrically conductive element passes electric current through the feed material to heat the feed material by resistive heating. The feed material may include activated carbon and at least one binder, to produce a carbon block product.
    Type: Application
    Filed: January 10, 2014
    Publication date: July 10, 2014
    Applicant: Koslow Technologies Corporation
    Inventor: Evan E. Koslow
  • Patent number: 7144533
    Abstract: The invention is directed to a microbiological interception enhanced filter medium, preferably having an adsorbent prefilter located upstream from the filter medium. Preferably, the prefilter is adapted to remove natural organic matter in an influent prior to the influent contacting the microbiological interception enhanced filter medium, thereby preventing loss of charge on the filter medium. The microbiological interception enhanced filter medium is most preferably comprised of fibrillated cellulose fibers, in particular, lyocell fibers. At least a portion of the surface of the at least some of the fibers have formed thereon a microbiological interception enhancing agent comprising a cationic metal complex. A filter medium of the present invention provides greater than about 4 log viral interception, and greater than about 6 log bacterial interception.
    Type: Grant
    Filed: May 20, 2003
    Date of Patent: December 5, 2006
    Assignee: Koslow Technologies Corporation
    Inventor: Evan E. Koslow
  • Patent number: 7008537
    Abstract: The invention is directed to a microbiological interception enhanced filter medium, preferably having an adsorbent prefilter located upstream from the filter medium. Preferably, the prefilter is adapted to remove natural organic matter in an influent prior to the influent contacting the microbiological interception enhanced filter medium, thereby preventing loss of charge on the filter medium. The microbiological interception enhanced filter medium is most preferably comprised of fibrillated cellulose fibers, in particular, lyocell fibers. At least a portion of the surface of the at least some of the fibers have formed thereon a microbiological interception enhancing agent comprising a cationic metal complex. A filter medium of the present invention provides greater than about 4 log viral interception, and greater than about 6 log bacterial interception.
    Type: Grant
    Filed: May 20, 2003
    Date of Patent: March 7, 2006
    Assignee: Koslow Technologies Corporation
    Inventor: Evan E. Koslow
  • Patent number: 6913154
    Abstract: The invention is directed to a microbiological interception enhanced filter medium, preferably having an adsorbent prefilter located upstream from the filter medium. Preferably, the prefilter is adapted to remove natural organic matter in an influent prior to the influent contacting the microbiological interception enhanced filter medium, thereby preventing loss of charge on the filter medium. The microbiological interception enhanced filter medium is most preferably comprised of fibrillated cellulose fibers, in particular, lyocell fibers. At least a portion of the surface of the at least some of the fibers have formed thereon a microbiological interception enhancing agent comprising a cationic metal complex. A filter medium of the present invention provides greater than about 4 log viral interception, and greater than about 6 log bacterial interception.
    Type: Grant
    Filed: May 20, 2003
    Date of Patent: July 5, 2005
    Assignee: Koslow Technologies Corporation
    Inventor: Evan E. Koslow
  • Patent number: 6889599
    Abstract: An apparatus and method useful for brewing a beverage. A brewing liquid, generally water, and in some cases brewing ingredients, are placed in a container having a bottom with openings that, due to surface tension of the liquid, do not allow the liquid to pass through the openings until the liquid approaches or reaches its boiling point. The liquid is heated to approach its boiling point by placing the apparatus in a microwave oven or by the use of an electrical resistance heater associated with the container. The brewed beverage is captured in a second, temporary container from which it may be consumed or served.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: May 10, 2005
    Assignee: Koslow Technologies Corporation
    Inventor: Evan E. Koslow
  • Patent number: 6872311
    Abstract: The present invention is directed to an air filter medium comprising nanofibers, the filter medium having a thickness of less than 0.25 millimeters, a Figure of Merit of greater than about 0.075, and an efficiency of greater than about 99.9% when capturing aerosol particles of about 0.18 microns in size and a pressure drop of less than about 40 millimeters water column at a flow rate of about 32 liters/minute through a sample 100 cm2 in size. A coating of the nanofibers may also be used to enhance performance of existing filter media by increasing the FOM of the existing filter media. Preferably, the nanofibers are fibrillated.
    Type: Grant
    Filed: January 13, 2003
    Date of Patent: March 29, 2005
    Assignee: Koslow Technologies Corporation
    Inventor: Evan E. Koslow
  • Patent number: 6866704
    Abstract: The present invention is directed to a microporous filter medium treated with a microbiological interception enhancing agent comprising a cationic chemical having a medium to high charge density and a molecular weight greater than about 5000 Daltons, adsorbed on at least a portion of the microporous structure, and a biologically active metal in direct proximity to the cationic chemical and also on at least a portion of the microporous structure, wherein the flow of fluid through the filter medium decreases in response to an amount of polyanionic acids present in an influent. Robust microbiological interception is still maintained due to the extended empty bed contact time as a result of the diminished flow rate.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: March 15, 2005
    Assignee: Koslow Technologies Corporation
    Inventor: Evan E. Koslow
  • Patent number: 6840986
    Abstract: An air filter that can fit within existing building HVAC air supply systems suitable for withstanding NBC attacks, comprising a series of pleated composite layers. By using impregnated carbon particles of the proper size, nerve gases, and gases of lower molecular weight, such as cyanogen chloride, are effectively controlled, even under tests simulating large-scale attacks. A particulate filter such as, for example, a HEPA filter, may be included to control biological particles or toxic aerosol droplets. The complete filter operates at such a low differential pressure, that existing building mechanicals do not have to be upgraded or replaced. Also disclosed is a filter for use with a respirator.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: January 11, 2005
    Assignee: Koslow Technologies Corporation
    Inventor: Evan E. Koslow
  • Patent number: 6835311
    Abstract: The invention is directed to a microbiological interception enhanced filter medium, preferably having an adsorbent prefilter located upstream from the filter medium. Preferably, the prefilter is adapted to remove natural organic matter in an influent prior to the influent contacting the microbiological interception enhanced filter medium, thereby preventing loss of charge on the filter medium. The microbiological interception enhanced filter medium is most preferably comprised of fibrillated cellulose fibers, in particular, lyocell fibers. At least a portion of the surface of the at least some of the fibers have formed thereon a microbiological interception enhancing agent comprising a cationic metal complex. A filter medium of the present invention provides greater than about 4 log viral interception, and greater than about 6 log bacterial interception.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: December 28, 2004
    Assignee: Koslow Technologies Corporation
    Inventor: Evan E. Koslow
  • Patent number: 6783798
    Abstract: Thin, flexible composite materials, which are magnetic or magnetizable and processes for producing and using the materials. The composite material contains a laminate formed from a mixture of magnetic or magnetizable particles, binder particles (and optionally active particles), applied to and fused and/or coalesced with a first substrate. The composite preferably contains an additional second substrate fused to and/or coalesced with, the laminate on the side of the laminate opposite that of the first substrate.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: August 31, 2004
    Assignee: Koslow Technologies Corporation
    Inventor: Evan E. Koslow
  • Patent number: 6772535
    Abstract: An apparatus and method for generating water vapor or humidity, useful in a variety of applications, including a wood drying kiln. The apparatus may contain a hydrophilic disk, a water supply structure that supplies water so that the water is deposited on the hydrophilic disk, and a motor for rotating the disk at a speed sufficiently high so that water which is deposited on the disk is caused to leave the disk in the form of a mist of particles or droplets which are sufficiently small to evaporate rapidly to generate the water vapor. The disk may be made hydrophilic by covering with a fabric.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: August 10, 2004
    Assignee: Koslow Technologies Corporation
    Inventor: Evan E. Koslow
  • Patent number: 6770204
    Abstract: The present invention is directed to a composite filter medium having a pH altering material that can raise the pH of an influent such that microbiological contaminants in the influent remain substantially negatively charged such that a positively charged medium within the composite filter medium can more effectively capture the microbiological contaminants.
    Type: Grant
    Filed: March 15, 2003
    Date of Patent: August 3, 2004
    Assignee: Koslow Technologies Corporation
    Inventor: Evan E. Koslow
  • Patent number: 6719869
    Abstract: There is provided composite media and a method of producing them. The composite media contain a coalesced composite mixture of particles of an active ingredient, binder particles, and stabilizing particles. The stabilizing particles fuse the composite structure to both front and back substrates while the binder particles fuse the particles of active ingredient to each other and to one of the front and back substrates.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: April 13, 2004
    Assignee: Koslow Technologies Corporation
    Inventor: Evan E. Koslow
  • Patent number: 6720054
    Abstract: A desiccant system and a method for producing the same wherein a container is provided with a desiccant sheet that is trapped within the container and a water vapor impermeable cover for the container making a water impermeable seal thereto. The sheet may have a first substrate, and optionally, a second substrate, and desiccant particles adhered to the first substrate or trapped between the first substrate and the second substrate. A binder material may fuse the desiccant particles to one another and to the substrates. The sheet may be trapped within the bottle due to its tendency to unfurl to a flat condition, or it may be adhered to an inner surface of the bottle.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: April 13, 2004
    Assignee: Koslow Technologies Corporation
    Inventor: Evan E. Koslow
  • Patent number: 6703071
    Abstract: An absorbent article containing a composite mixture of absorbent macroporous particles and binder particles. Preferably, the absorbent macroporous particles are those having a macroporous structure which allow for the rapid flow of liquid therein, e.g., aerogels, xerogels, cryogels, or mixtures thereof. The absorbent articles produced thereby are preferably thin and lightweight, but maintain an ample rate of absorption allowing for a more rapid uptake of higher volumes of liquids.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: March 9, 2004
    Assignee: Koslow Technologies Corporation
    Inventor: Evan E. Koslow
  • Patent number: 6660172
    Abstract: The invention is directed to a precoat or body feed composition comprising a microbiological interception enhanced filter aid. Preferably, the microbiological interception enhanced filter aid comprises fibrillated lyocell nanofibers having coated on at least a portion of a surface thereof, a microbiological interception enhancing agent. The microbiological interception enhanced agent comprises a cationic material in combination with a biologically active metal. At least about 4 log reduction in bacterial interception is achieved with the microbiological interception enhanced filter aid alone or in combination with a bulk, untreated filter aid. A precoat composition including the microbiological interception enhanced filter aid can be used for one-step cold sterilization of beverages.
    Type: Grant
    Filed: November 20, 2002
    Date of Patent: December 9, 2003
    Assignee: Koslow Technologies Corporation
    Inventor: Evan E. Koslow
  • Patent number: 6610415
    Abstract: Thin, flexible composite materials, which are magnetic or magnetizable and processes for producing and using the materials. The composite material contains a laminate formed from a mixture of magnetic or magnetizable particles, binder particles (and optionally active particles), applied to and fused and/or coalesced with a first substrate. The composite preferably contains an additional second substrate fused to and/or coalesced with, the laminate on the side of the laminate opposite that of the first substrate.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: August 26, 2003
    Assignee: Koslow Technologies Corporation
    Inventor: Evan E. Koslow
  • Patent number: 6565961
    Abstract: An absorbent article containing a composite mixture of absorbent macroporous particles and binder particles. Preferably, the absorbent macroporous particles are those having a macroporous structure which allow for the rapid flow of liquid therein, e.g., aerogels, xerogels, cryogels, or mixtures thereof. The absorbent articles produced thereby are preferably thin and lightweight, but maintain an ample rate of absorption allowing for a more rapid uptake of higher volumes of liquids.
    Type: Grant
    Filed: March 11, 2002
    Date of Patent: May 20, 2003
    Assignee: Koslow Technologies Corporation
    Inventor: Evan Koslow
  • Patent number: 6550622
    Abstract: A composite filter medium for removing at least 99.95 percent of particulates of a size in the 3 to 4 micron range and dissolved chemical contaminants from a fluid and filters of various configurations employing the composite filter medium are disclosed. The composite filter medium comprises an adsorbent layer containing an adsorbent agent and a hydrophilic particulate intercepting layer disposed adjacent to the adsorbent layer. The composite medium has a mean flow pore diameter of about 1 to 10 microns, a bubble point of about 3 to 15 microns and an air permeability of about 0.5 to 7 liters per minute/cm2 with a pressure drop of about 0.1 bar.
    Type: Grant
    Filed: August 27, 1998
    Date of Patent: April 22, 2003
    Assignee: Koslow Technologies Corporation
    Inventor: Evan E. Koslow
  • Patent number: 6355330
    Abstract: One or more particulate active agents are fused to the surface of a substrate web by mixing the particulate agents with a particulate binder having a particle size not exceeding an average diameter of approximately 40 microns and coating the composite mixture onto the surface of the substrate. Thereafter; the coated substrate is heated to a temperature equal to or greater than the Vicat softening temperature of the binder and compressed within the nip of a pair of pressure rolls to achieve fusion. If desired, a top layer may be placed upon the coated composite prior to the compression step. Also disclosed are various products manufactured by the process.
    Type: Grant
    Filed: July 20, 1999
    Date of Patent: March 12, 2002
    Assignee: Koslow Technologies Corporation
    Inventors: Evan E. Koslow, Richard D. Kendrick, Gordon Spilkin