Patents Assigned to LanzaTech New Zealand Limited
  • Patent number: 10010807
    Abstract: Improvements in biological conversion processes and associated apparatuses are disclosed for the generation of useful end products such as ethanol, through metabolic pathways of C1-fixing bacteria that utilize, as a nutrient, a C1-carbon source from a C1-containing substrate such as an industrial waste gas. Particular aspects of the disclosure relate to the downstream recovery of ethanol and/or isopropanol from bleed and permeate streams and more particularly to performing such recovery with improved efficiency that can advantageously reduce capital (e.g., equipment) and/or operating (e.g., utility) costs. Particular aspects related to the downstream recovery of ethanol and/or isopropanol using a low pressure separator having an internal divider.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: July 3, 2018
    Assignee: LANZATECH NEW ZEALAND LIMITED
    Inventor: Michael Anthony Schultz
  • Patent number: 9994878
    Abstract: Bacteria are genetically engineered to produce 3-hydroxypropionate (3-HP). The bacteria are carboxydotrophic acetogens. The bacteria produce acetyl-coA using the Wood-Ljungdahl pathway for fixing CO/CO2. A malonyl-coA reductase from a bacterium that contains such an enzyme is introduced. Additionally, an acetyl-coA carboxylase may also be introduced The production of 3-HP can be improved by overproduction of acetyl-CoA carboxylase or by overproduction of biotin. This can be effected by improved promoters or higher copy number or enzymes that are catalytically more efficient.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: June 12, 2018
    Assignee: LanzaTech New Zealand Limited
    Inventors: Michael Koepke, Wendy Yiting Chen
  • Patent number: 9988598
    Abstract: A bioreactor system is provided for continuous fermentation of a gaseous substrate, said system comprising two or more primary bioreactors and one or more secondary bioreactors connected by a central bleed line. Further provided is a process for inoculating multiple bioreactors utilizing a central bleed line, said process comprising passing fermentation broth from a first primary bioreactor to other primary bioreactors and/or secondary bioreactors via a central bleed line. Further provided is a process for maintaining stable fermentation of a gaseous substrate across multiple bioreactors, said process comprising providing fermentation broth from one or more operational primary bioreactors to one or more secondary bioreactors via a central bleed line.
    Type: Grant
    Filed: July 4, 2014
    Date of Patent: June 5, 2018
    Assignee: LANZATECH NEW ZEALAND LIMITED
    Inventors: Christophe Collet, Jan Yan Ng, David Nathaniel Aston
  • Patent number: 9957531
    Abstract: The invention relates to a genetically engineered bacterium having an enzyme that converts acetyl-CoA to acetoacetyl-CoA, an enzyme that converts acetoacetyl-CoA to 3-hydroxybutyryl-CoA, and an enzyme that converts 3-hydroxybutyryl-CoA to 3-hydroxybutyrate. The bacterium may also have enzymes to produce other downstream products, such as 3-hydroxybutyryaldehyde, and 1,3-butanediol. Typically, the bacterium is capable of producing these products from a gaseous substrate, such as syngas or an industrial waste gas.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: May 1, 2018
    Assignee: LANZATECH NEW ZEALAND LIMITED
    Inventors: Michael Koepke, Rasmus Overgaard Jensen, James Bruce Yarnton Haycock Behrendorff, Ryan Edward Hill, Darmawi Juminaga, Alexander Paul Mueller
  • Patent number: 9890384
    Abstract: Carboxydotrophic acetogenic microorganisms do not produce MEK and/or 2-butanol. They lack the biosynthesis pathways to make these products. In addition, they produce the intermediate (R,R)-2,3-butanediol whereas the production of MEK and 2-butanol requires production of the intermediate (R,S)-2,3-butanediol. Nonetheless, the production of MEK and/or 2-butanol can be accomplished using recombinant microorganisms adapted to express or overexpress key enzymes in the MEK and/or 2-butanol biosynthesis pathways. Such microorganisms, such as the carboxydotrophic acetogen Clostridium autoethanogenum, can ferment substrates comprising CO. The overall scheme involves the production of 2-butanol from (R,S)-2,3-butanediol and the conversion of (R)-acetoin to (S)-2,3-butanediol. These steps are involved in the production of both MEK and 2-butanol. Such fermentation methods offer a means of using carbon monoxide from industrial processes which would otherwise be released into the atmosphere and pollute the environment.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: February 13, 2018
    Assignee: LANZATECH NEW ZEALAND LIMITED
    Inventors: Alexander Paul Mueller, Michael Koepke, Shilpa Nagaraju
  • Patent number: 9890399
    Abstract: Methods of capturing carbon by microbial fermentation of a gaseous substrate comprising CO. The methods include converting CO to one or more products including alcohols and/or acids and optionally capturing CO2 to improve overall carbon capture. In certain aspects, also disclosed are to processes for producing alcohols, particularly ethanol, from industrial waste streams, particularly steel mill off-gas.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: February 13, 2018
    Assignee: LANZATECH NEW ZEALAND LIMITED
    Inventors: Sean Dennis Simpson, Christophe Collet, Michael Cockrem, Simon David Oakley, Michael Koepke
  • Patent number: 9834795
    Abstract: The invention provides recombinant microorganisms and methods for the production of acetone from gaseous substrates. For example, the recombinant microorganism may be modified to express an exogenous thiolase, an exogenous CoA transferase, and an exogenous decarboxylase.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: December 5, 2017
    Assignee: LANZATECH NEW ZEALAND LIMITED
    Inventors: Michael Koepke, Sean Simpson, Fungmin Liew, Wendy Yiting Chen
  • Patent number: 9834792
    Abstract: Multi-stage, biological processes and systems for converting a C1 carbon source to desired end products are described. The processes comprise dividing a gaseous C1-containing substrate, in parallel, among multiple bioreactor stages. Liquid products are successively fed, in series, from a first bioreactor stage to downstream bioreactor stages. Operation can be simplified by avoiding the requirement for microorganism separation and recycle at each stage. In addition, overall vapor-liquid mass transfer for the combined stages is very favorable, leading to high end product productivity with comparably low byproduct metabolite productivity.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: December 5, 2017
    Assignee: LANZATECH NEW ZEALAND LIMITED
    Inventors: Simon Richard Trevethick, Jason Carl Bromley, Guy William Waters, Michael Koepke, Loan Phuong Tran, Rasmus Jensen Overgaard
  • Patent number: 9783835
    Abstract: The invention provides methods and systems for the production of lipid products from a gaseous substrate using a two stage fermentation process. The method comprises providing a gaseous substrate comprising CO, CO2 and H2 or mixtures thereof, to a first bioreactor containing a culture or one or more microorganisms, and fermenting the substrate to produce a product comprising acetate. The acetate from the first bioreactor is then provided to a second bioreactor, where it is used as a substrate for fermentation to lipids by one or more yeasts.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: October 10, 2017
    Assignee: LANZATECH NEW ZEALAND LIMITED
    Inventors: Sean Dennis Simpson, Sebastian Michal Bernasek
  • Patent number: 9771603
    Abstract: A methods for altering the metabolite profile of a fermentation, by increasing flux through acetolactate. The methods comprises increasing production of one or more products derived from acetolactate. Further provided is a method for increasing the production of 2,3-butandiol by microbial fermentation of gaseous substrates, the method comprising providing a compound which inhibits one or more enzymes which convert acetolactate to branched chain amino acids to the fermentation. The present invention further provides methods for increasing the production of 2,3-butandiol relative to other fermentation products such as ethanol and acetic acid.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: September 26, 2017
    Assignee: LANZATECH NEW ZEALAND LIMITED
    Inventors: Kathleen Frances Smart, Alexander Paul Mueller, Michael James Harry Mawdsley, Christophe Daniel Mihalcea
  • Patent number: 9745566
    Abstract: The present provides selection markers, methods, nucleic acids, and vectors of use in the preparation of recombinant Clostridium spp.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: August 29, 2017
    Assignee: LANZATECH NEW ZEALAND LIMITED
    Inventors: David Jeffrey Fraser Walker, Shilpa Nagaraju, Michael Koepke, Alexander Paul Mueller
  • Patent number: 9738875
    Abstract: The invention relates to a genetically engineered bacterium comprising an energy-generating fermentation pathway and methods related thereto. In particular, the invention provides a bacterium comprising a phosphate butyryltransferase (Ptb) and a butyrate kinase (Buk) (Ptb-Buk) that act on non-native substrates to produce a wide variety of products and intermediates. In certain embodiments, the invention relates to the introduction of Ptb-Buk into a C1-fixing microoorgansim capable of producing products from a gaseous substrate.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: August 22, 2017
    Assignee: LANZATECH NEW ZEALAND LIMITED
    Inventors: Michael Koepke, Rasmus Overgaard Jensen, James Bruce Yarnton Haycock Behrendorff, Ryan Edward Hill
  • Patent number: 9701987
    Abstract: A process for producing and controlling pyruvate derived products during the fermentation of a CO containing substrate by an acetogenic carboxydotrophic microorganism has been developed. The process involves increasing the concentration of at least one nutrient selected from the group consisting of vitamin B1, vitamin B5, vitamin B7 and mixtures thereof above the cellular requirement of the microorganism. When the concentration is increased, the production of 2,3-butanediol (2,3-BDO) increases whereas the production of the other metabolites is virtually unchanged. The effect is reversible so that when the concentration is decreased, the production of 2,3-BDO is also decreased. This allows one to control the ratio of ethanol:2,3-BDO to a desired value which can vary from about 4:1 to about 1:2.
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: July 11, 2017
    Assignee: LANZATECH NEW ZEALAND LIMITED
    Inventors: Kathleen Frances Smart, Boi San Ly
  • Patent number: 9624512
    Abstract: The invention relates to the production of products such as alcohols and acids by microbial fermentation, particularly microbial fermentation of substrates comprising CO. It more particularly relates to methods and systems for improving efficiency of products by microbial fermentation. In particular embodiments, the invention provides a method of optimizing production of desired products including the step of ascertaining the proportion of CO converted to CO2.
    Type: Grant
    Filed: March 20, 2013
    Date of Patent: April 18, 2017
    Assignee: LANZATECH NEW ZEALAND LIMITED
    Inventors: Sean Dennis Simpson, Joseph Henry Tizard
  • Patent number: 9617566
    Abstract: Processes, as well as associated systems and computer program (software) products, are disclosed for the biological conversion of CO into desired end products such as ethanol. The control methodologies used for these processes can advantageously result in a reduced time required for a batch operation or other initial operating period, prior to achieving a continuous operation, which may be demarcated either by the addition of fresh culture medium at a defined flow rate or by another process initiation target. The control methodologies may alternatively, or in combination, improve a process performance parameter, such as productivity of the desired end product or bacterial growth rate, during this batch operation or other initial operating period.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: April 11, 2017
    Assignee: LANZATECH NEW ZEALAND LIMITED
    Inventors: Christophe Collet, Guy William Waters, Jason Carl Bromley, Justin Yi Yang, Jarod Nathan Wilson
  • Patent number: 9617509
    Abstract: A reactor system is provided for improved fermentation of a gaseous substrate through the introduction of a secondary loop to a forced-circulation loop reactor. The reactor comprises a primary loop through which fermentation broth comprising a gaseous substrate is circulated through a riser segment and a downcomer section by a loop pump. Downstream of the loop pump a portion of fermentation broth is withdrawn from the downcomer section and is directed to the top of the reactor via a secondary loop. Further provided is a method for improving the mass transfer of a gaseous substrate to a fermentation broth in a fermentation vessel comprising a secondary loop. Further provided is a method for reducing foam in the headspace of a fermentation vessel comprising a secondary loop.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: April 11, 2017
    Assignee: LANZATECH NEW ZEALAND LIMITED
    Inventors: Xueliang Li, Benjamin James Cossey, Simon Richard Trevethick
  • Patent number: 9422565
    Abstract: The invention provides a recombinant carboxydotrophic Clostridia microorganism with increased overall utilization of NADPH relative to a parent microorganism. Further, the invention provides a method of producing a recombinant carboxydotrophic Clostridia microorganism which exhibits increased NADPH utilization relative to a parental microorganism. In particular, the invention relates to increasing the overall utilization of NADPH in a recombinant carboxydotrophic Clostridia microorganism in order to increase the production of at least one fermentation product by the microorganism.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: August 23, 2016
    Assignee: LANZATECH NEW ZEALAND LIMITED
    Inventors: Alexander Paul Mueller, Michael Koepke
  • Patent number: 9410130
    Abstract: The invention provides, inter alia, methods for the production of acetone, isopropanol and/or precursors of acetone and/or isopropanol by microbial fermentation of substrates comprising CO, genetically modified microorganisms of use in such methods, nucleic acids suitable for preparation of genetically modified microorganisms, a novel alcohol dehydrogenase and nucleic acids encoding same.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: August 9, 2016
    Assignee: LANZATECH NEW ZEALAND LIMITED
    Inventors: Michael Koepke, Sean Simpson, FungMin Liew, Wendy Chen
  • Patent number: 9365868
    Abstract: The invention provides, inter alia, methods for the production of acetone, isopropanol and/or precursors of acetone and/or isopropanol by microbial fermentation of substrates comprising CO, genetically modified microorganisms of use in such methods, nucleic acids suitable for preparation of genetically modified microorganisms, a novel alcohol dehydrogenase and nucleic acids encoding same.
    Type: Grant
    Filed: April 29, 2012
    Date of Patent: June 14, 2016
    Assignee: LANZATECH NEW ZEALAND LIMITED
    Inventors: Michael Koepke, Sean Simpson, Fungmin Liew, Wendy Chen
  • Patent number: 9365873
    Abstract: The invention provides genetically engineered microorganisms with altered carbon monoxide dehydrogenase (CODH) activity and methods related thereto. In particular, the invention provides a genetically engineered carboxydotrophic acetogenic bacterium having decreased or eliminated activity of CODH1 and/or CODH2. In certain embodiments, the bacterium may also have increased activity of CODH/ACS. The invention further provides a method for producing a product by culturing the bacterium in the presence of a gaseous substrate comprising one or more of carbon monoxide, carbon dioxide, and hydrogen.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: June 14, 2016
    Assignee: LANZATECH NEW ZEALAND LIMITED
    Inventors: Michael Koepke, Fungmin Liew