Patents Assigned to Lightwave Logic Inc.
  • Patent number: 11262605
    Abstract: A monolithic PIC including a monolithic laser formed in/on a platform and a polymer modulator monolithically built onto the platform and optically coupled to the laser. The modulator includes a first cladding layer, a passive core region with a surface abutting a surface of the first cladding layer, the core region extending to define an input and an output for the modulator. A shaped electro-optic polymer active component has a surface abutting a surface of a central portion of the core region. The active component is polled to align dipoles and promote modulation of light and has a length that extends only within a modulation area defined by modulation electrodes. A second cladding layer encloses the active component and is designed to produce adiabatic transition of light waves traveling in the core region into the active component to travel the length thereof and return to the core region.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: March 1, 2022
    Assignee: Lightwave Logic Inc.
    Inventors: Michael Lebby, Yasufumi Enami
  • Patent number: 11067748
    Abstract: A guide transition device including a light source designed to generate a light beam, a light input port on a first plane and coupled to receive the light beam from the light source, a light output port on a second plane different than the first plane, the light output port designed to couple a received light beam to output equipment and plane shifting apparatus coupled to receive the light beam from the light input port on the first plane and to shift or transfer the light beam to the second plane. The plane shifting apparatus is coupled to transfer the light beam to the light output port on the second plane.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: July 20, 2021
    Assignee: Lightwave Logic Inc.
    Inventors: Michael Lebby, Frederick J Leonberger, Richard Becker
  • Patent number: 11042051
    Abstract: A direct-drive region-less polymer modulator includes a waveguide having a first cladding layer, a passive core with a surface abutting the first cladding layer, the passive core extending to an optical input and an optical output. A shaped electro-optic polymer active component with a surface abutting the passive core region, the shaped component being polled to align dipoles and promote modulation of light and having a length that extends only within a modulation area defined by modulation electrodes. A second cladding layer enclosing the shaped component and designed to produce adiabatic transition of light waves traveling in the passive core region into the shaped component to travel the length of the shaped component and return to the passive core region. A portion of the multilayer waveguide defining the polymer modulator as a direct-drive polymer modulator.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: June 22, 2021
    Assignee: Lightwave Logic Inc.
    Inventors: Michael Lebby, Yasufumi Enami
  • Publication number: 20210141251
    Abstract: A polymer modulator including a waveguide core defined over an insulating layer and having a first passive region including a light input, a second passive region including a light output, and an active region optically coupling the passive regions into a continuous waveguide core between the input and output. The waveguide core in the first and second passive regions including one of sol-gel and SiO2 surrounded by cladding including one of sol-gel and SiO2. The cladding in the passive regions having a first refractive index, the waveguide core in both regions having a second refractive index at least 0.01 higher than the first refractive index. The waveguide core in the active region including sol-gel, a cladding layer of sol-gel positioned between the insulating layer and the waveguide core, the refractive index of the waveguide core is at least 0.01 higher than the refractive index of the cladding layer.
    Type: Application
    Filed: May 5, 2020
    Publication date: May 13, 2021
    Applicant: Lightwave Logic Inc.
    Inventors: Michael Lebby, Zhiming Liu
  • Publication number: 20210141250
    Abstract: A polymer modulator includes a first cladding layer, a passive core region with a surface abutting a surface of the first cladding layer, the passive core region extending to define an optical input and an optical output for the modulator, a shaped electro-optic polymer active component with a surface abutting a surface of a central portion of the passive core region, the shaped electro-optic polymer active component being polled to align dipoles and promote modulation of light, the shaped electro-optic polymer active component having a length that extends only within a modulation area defined by modulation electrodes, and a second cladding layer enclosing the shaped electro-optic polymer active component and designed to produce adiabatic transition of light waves traveling in the passive core region into the shaped electro-optic polymer active component to travel the length of the shaped electro-optic polymer active component and return to the passive core region.
    Type: Application
    Filed: November 12, 2019
    Publication date: May 13, 2021
    Applicant: Lightwave Logic Inc.
    Inventors: Michael Lebby, Yasufumi Enami, Zhiming Liu
  • Patent number: 10989871
    Abstract: A polymer waveguide/modulator including a lower cladding layer, a polymer core, an upper cladding layer, a first protection/barrier layer sandwiched between the lower cladding layer and the core, and a second protection/barrier layer sandwiched between the core and the upper cladding layer. The protection/barrier layers designed to protect the cladding layers and the core from solvents and gases and to prevent current leakage between the cladding layers and the core. The first protection/barrier layer is optically transparent and designed with a refractive index less than, greater than, or the same as the refractive index of the core and approximately equal to the refractive index of the lower cladding layer. The second protection/barrier layer is optically transparent and designed with a refractive index less than, greater than, or the same as the refractive index of the core and approximately equal to the refractive index of the upper cladding layer.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: April 27, 2021
    Assignee: Lightwave Logic Inc.
    Inventors: Richard Becker, Michael Lebby, Youngwoo Yi
  • Patent number: 10886694
    Abstract: A hermetic capsule including a semiconductor/metal base with sensitive semiconductor/polymer electrical and optical components formed thereon and a semiconductor/metal lid. The semiconductor/metal lid sealed to the semiconductor/metal base by metallization so as to form a chamber including all of the sensitive semiconductor/polymer electrical and optical components and hermetically sealing the chamber and all sensitive components from the ambient. External access to the sensitive semiconductor/polymer electrical and optical components is provided through a metallization.
    Type: Grant
    Filed: December 15, 2019
    Date of Patent: January 5, 2021
    Assignee: Lightwave Logic Inc.
    Inventor: Michael Lebby
  • Publication number: 20200285085
    Abstract: A direct-drive region-less polymer modulator includes a waveguide having a first cladding layer, a passive core with a surface abutting the first cladding layer, the passive core extending to an optical input and an optical output. A shaped electro-optic polymer active component with a surface abutting the passive core region, the shaped component being polled to align dipoles and promote modulation of light and having a length that extends only within a modulation area defined by modulation electrodes. A second cladding layer enclosing the shaped component and designed to produce adiabatic transition of light waves traveling in the passive core region into the shaped component to travel the length of the shaped component and return to the passive core region. A portion of the multilayer waveguide defining the polymer modulator as a direct-drive polymer modulator.
    Type: Application
    Filed: February 11, 2020
    Publication date: September 10, 2020
    Applicant: Lightwave Logic Inc.
    Inventors: Michael Lebby, Yasufumi Enami
  • Patent number: 10754093
    Abstract: A method of fabricating polymer modulators includes forming an insulating layer on a platform and depositing and patterning a ground electrode on the insulating layer. A bottom polymer cladding layer, a first blocking layer, a polymer core layer, a second blocking layer, and a top polymer cladding layer are deposited in order. A third blocking layer is deposited on the top cladding layer and patterned to define vias which are used to etch ground openings through the top polymer cladding layer, the second blocking layer, the core layer, the first blocking layer, and the bottom cladding layer to the ground electrode. The openings are filled with electrically conductive material from electrical communication with the ground electrode to a surface of the top polymer cladding layer. The third blocking layer is removed and electrical contacts are formed on the top polymer cladding layer in electrical communication with the electrically conductive material.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: August 25, 2020
    Assignee: Lightwave Logic Inc.
    Inventors: Zhiming Liu, Michael Lebby, Brian Shaw, Richard Becker, Youngwoo Yi
  • Publication number: 20200183245
    Abstract: Electro-optic (EO) devices having an EO polymer core comprising a first host polymer and a first nonlinear optical chromophore (NLOC); and a cladding comprising a second host polymer and a second NLOC, and methods of preparing the same; wherein the first NLOC has a first bridge covalently bonded to an electron-accepting group and an electron-donating group; wherein the second NLOC has a second bridge covalently bonded to an electron-accepting group and an electron-donating group; and wherein the second bridge is less conjugated than the first bridge such that the cladding has an index of refraction that is less than that of the EO polymer core, and wherein the second NLOC is present in the second host polymer in a concentration such that the cladding has a conductivity equal to or greater than at least 10% of the conductivity of the EO polymer core at a poling temperature.
    Type: Application
    Filed: September 17, 2019
    Publication date: June 11, 2020
    Applicant: Lightwave Logic, Inc.
    Inventors: Youngwoo Yi, Cory Steven Pecinovsky, Michael Stephen Lebby, Richard Anthony Becker
  • Publication number: 20200183201
    Abstract: A monolithic PIC including a monolithic laser formed in/on a platform and a polymer modulator monolithically built onto the platform and optically coupled to the laser. The modulator includes a first cladding layer, a passive core region with a surface abutting a surface of the first cladding layer, the core region extending to define an input and an output for the modulator. A shaped electro-optic polymer active component has a surface abutting a surface of a central portion of the core region. The active component is polled to align dipoles and promote modulation of light and has a length that extends only within a modulation area defined by modulation electrodes. A second cladding layer encloses the active component and is designed to produce adiabatic transition of light waves traveling in the core region into the active component to travel the length thereof and return to the core region.
    Type: Application
    Filed: December 11, 2019
    Publication date: June 11, 2020
    Applicant: Lightwave Logic Inc.
    Inventors: Michael Lebby, Yasufumi Enami
  • Publication number: 20200150363
    Abstract: A conductive hermetically sealed monolithic photonic integrated circuit with optical components and multiple optical and electrical inputs/outputs includes a semiconductor/metal base having sensitive components with multiple optical and electrical inputs, multiple optical and electrical outputs, and/or multiple optical and electrical inputs and outputs. An electrically conductive basic lid includes at least two of metal, dielectric and semiconductor materials combined to form an electrically conductive protective circuit. The conductive basic lid is sealed to the semiconductor/metal base by metallization so as to form a chamber including the sensitive components and hermetically sealing the chamber and the sensitive component from the ambient in a basic hermetic capsule and the electrically conductive protective circuit is formed and connected to protect the sensitive components from external electrical interference.
    Type: Application
    Filed: November 9, 2018
    Publication date: May 14, 2020
    Applicant: Lightwave Logic Inc.
    Inventor: Michael Lebby
  • Publication number: 20200119516
    Abstract: A hermetic capsule including a semiconductor/metal base with sensitive semiconductor/polymer electrical and optical components formed thereon and a semiconductor/metal lid. The semiconductor/metal lid sealed to the semiconductor/metal base by metallization so as to form a chamber including all of the sensitive semiconductor/polymer electrical and optical components and hermetically sealing the chamber and all sensitive components from the ambient. External access to the sensitive semiconductor/polymer electrical and optical components is provided through a metallization.
    Type: Application
    Filed: December 15, 2019
    Publication date: April 16, 2020
    Applicant: Lightwave Logic Inc.
    Inventor: Michael Lebby
  • Publication number: 20200088939
    Abstract: A guide transition device including a light source designed to generate a light beam, a light input port on a first plane and coupled to receive the light beam from the light source, a light output port on a second plane different than the first plane, the light output port designed to couple a received light beam to output equipment and plane shifting apparatus coupled to receive the light beam from the light input port on the first plane and to shift or transfer the light beam to the second plane. The plane shifting apparatus is coupled to transfer the light beam to the light output port on the second plane.
    Type: Application
    Filed: November 8, 2019
    Publication date: March 19, 2020
    Applicant: Lightwave Logic Inc.
    Inventors: Michael Lebby, Frederick J. Leonberger, Richard Becker
  • Publication number: 20200088941
    Abstract: A polymer waveguide/modulator including a lower cladding layer, a polymer core, an upper cladding layer, a first protection/barrier layer sandwiched between the lower cladding layer and the core, and a second protection/barrier layer sandwiched between the core and the upper cladding layer. The protection/barrier layers designed to protect the cladding layers and the core from solvents and gases and to prevent current leakage between the cladding layers and the core. The first protection/barrier layer is optically transparent and designed with a refractive index less than, greater than, or the same as the refractive index of the core and approximately equal to the refractive index of the lower cladding layer. The second protection/barrier layer is optically transparent and designed with a refractive index less than, greater than, or the same as the refractive index of the core and approximately equal to the refractive index of the upper cladding layer.
    Type: Application
    Filed: November 21, 2019
    Publication date: March 19, 2020
    Applicant: Lightwave Logic Inc.
    Inventors: Richard Becker, Michael Lebby, Youngwoo Yi
  • Patent number: 10591755
    Abstract: A direct-drive polymer modulator including a platform, a multilayer waveguide formed in/on the platform, the waveguide including a bottom cladding layer, an electro-optic polymer core and a top cladding layer, and at least a portion of the waveguide forming a direct-drive polymer modulator.
    Type: Grant
    Filed: February 19, 2018
    Date of Patent: March 17, 2020
    Assignee: Lightwave Logic Inc.
    Inventors: Richard Becker, Frederick J Leonberger, Michael Lebby
  • Publication number: 20200083668
    Abstract: A guide transition device including a light source designed to generate a light beam, a light input port on a first plane and coupled to receive the light beam from the light source, a light output port on a second plane different than the first plane, the light output port designed to couple a received light beam to output equipment and plane shifting apparatus coupled to receive the light beam from the light input port on the first plane and to shift or transfer the light beam to the second plane. The plane shifting apparatus including one or more digital gratings each designed to deflect the light beam approximately ninety degrees. The plane shifting apparatus is coupled to transfer the light beam to the light output port on the second plane.
    Type: Application
    Filed: November 11, 2019
    Publication date: March 12, 2020
    Applicant: Lightwave Logic Inc.
    Inventors: Michael Lebby, Frederick J Leonberger
  • Patent number: 10574025
    Abstract: A hermetic capsule including a semiconductor/metal base with sensitive semiconductor/polymer electrical and optical components formed thereon and a semiconductor/metal lid. The semiconductor/metal lid sealed to the semiconductor/metal base by metallization so as to form a chamber including all of the sensitive semiconductor/polymer electrical and optical components and hermetically sealing the chamber and all sensitive components from the ambient. External access to the sensitive semiconductor/polymer electrical and optical components is provided through a metallization.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: February 25, 2020
    Assignee: Lightwave Logic Inc.
    Inventor: Michael Lebby
  • Patent number: 10527786
    Abstract: A monolithic photonic integrated circuit includes a platform, a monolithic laser formed in/on the platform, and an electro-optic polymer modulator monolithically built onto the platform and optically coupled to the monolithic laser. The polymer modulator is optically coupled to the monolithic laser by waveguides including electro-optic polymer waveguides. The electro-optic polymer modulator and the electro-optic polymer waveguides including an electro-optic polymer core and top and bottom electro-optic polymer cladding layers. The electro-optic polymer core having an electro-optic coefficient (r33) greater than 250 pm/v, and a Tg 150° C. to 200° C., and the top and bottom electro-optic polymer cladding layers having a Tg approximately the same as the Tg of the electro-optic polymer core.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: January 7, 2020
    Assignee: Lightwave Logic Inc.
    Inventors: Frederick J Leonberger, Michael Lebby, Richard Becker
  • Patent number: 10520673
    Abstract: A polymer waveguide/modulator including a lower cladding layer, a polymer core, an upper cladding layer, a first protection/barrier layer sandwiched between the lower cladding layer and the core, and a second protection/barrier layer sandwiched between the core and the upper cladding layer. The protection/barrier layers designed to protect the cladding layers and the core from solvents and gases and to prevent current leakage between the cladding layers and the core. The first protection/barrier layer is optically transparent and designed with a refractive index less than, greater than, or the same as the refractive index of the core and approximately equal to the refractive index of the lower cladding layer. The second protection/barrier layer is optically transparent and designed with a refractive index less than, greater than, or the same as the refractive index of the core and approximately equal to the refractive index of the upper cladding layer.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: December 31, 2019
    Assignee: Lightwave Logic Inc.
    Inventors: Richard Becker, Michael Lebby, Youngwoo Yi