Patents Assigned to Linden Photonics, Inc.
  • Patent number: 8943641
    Abstract: Methods and apparatus for the removal of foreign matter, such as oil and dust, from the end faces of optical fiber and optical fiber connectors. Cleaning is effected by bringing carbon nanotube material into contact with an end face to create a differential adhesion in the proximity of the end face that more strongly attracts foreign matter residing on the end face to the carbon nanotube material than its attraction to the end face. The carbon nanotube material is applied with cleaning swabs or tapes that are used to clean end faces with swiping actions.
    Type: Grant
    Filed: May 30, 2011
    Date of Patent: February 3, 2015
    Assignee: Linden Photonics, Inc.
    Inventors: Amaresh Mahapatra, Stephen M. O'Riorden
  • Patent number: 8842956
    Abstract: A non-kink, non-hockling optical cable comprising an optical fiber capable of propagating light along its longitudinal axis. A buffer layer made of a soft plastic material surrounds the silica core and cladding, and a supplemental layer surrounds the buffer layer. The supplemental layer consists essentially of a liquid crystal polymer (LCP) material to enhance the tensile strength of the optical fiber. Finally, an encasing polymer layer with a breaking strain greater than 30%, surrounds the supplemental layer, to increase the flexibility of the optical cable.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: September 23, 2014
    Assignee: Linden Photonics, Inc.
    Inventors: Stephen M. O'Riorden, Amaresh Mahapatra
  • Patent number: 8263862
    Abstract: A packaging system having a housing for providing a hermetically sealed interior space for receiving and supporting optoelectronic components. The housing has at least one section of wall comprising a layer of liquid crystal polymer (LCP). At least one hermetically sealed electrical port is formed in the LCP wall section over a predetermined area and comprises a layer of metal adhered to and overlying the predetermined area on the of the LCP wall section. An electrode passes through the metal from the exterior of the system to the interior space to provide an electrical communication path between the optoelectronic components and the exterior of said packaging system. A solder joint is formed between the electrode and the layer of metal to provide a hermetic connection between the layer of metal and the electrode to assure that the hermeticity of the housing remains unchanged with the electrical port present.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: September 11, 2012
    Assignee: Linden Photonics, Inc.
    Inventors: Amaresh Mahapatra, Stephen M. O'Riorden
  • Patent number: 7838765
    Abstract: An electrically conducting wire structure and a method for its manufacture where the wire structure has at least one elongated electrically conducting wire and a liquid crystal polymer coating of insulation formed by cross-head extrusion as a layer around the electrically conducting wire. An abrasion layer is preferably formed over the liquid crystal polymer coating, the elongated electrically conducting wire is selected from the group that includes copper, silver, tinned copper, aluminum, and conducting polymers, and the liquid crystal polymer material is a thermotropic thermoplastic.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: November 23, 2010
    Assignee: Linden Photonics, Inc.
    Inventor: Amaresh Mahapatra
  • Patent number: 7766561
    Abstract: The invention relates to high-strength, abrasion-resistant optical fiber cable having a supplemental layer consisting essentially of a liquid crystal polymer (LCP) to enhance the cable's tensile strength and hermetically seal it, and an outermost encasing layer to protect the LCP supplemental layer from damage that could otherwise diminish the tensile strength or destroy the moisture barrier properties of the cable gained by adding the supplemental liquid crystal polymer layer. The encasing layer is preferably a thin layer of a smooth, non-crystalline thermoplastic that can be easily removed with chemicals that do not affect the properties of the supplemental layer so that the supplemental layer can be made accessible for promoting the formation of hermetically sealed interfaces between the cable and other structures. Cross-head extrusion methods for coating optical fibers with LCP and encasing layers are described along with laser and ultrasonic bonding techniques for fabricating hermetic packages.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: August 3, 2010
    Assignee: Linden Photonics, Inc.
    Inventors: Amaresh Mahapatra, Robert J. Mansfield
  • Publication number: 20100183269
    Abstract: The invention relates to high-strength, abrasion-resistant optical fiber cable having a supplemental layer consisting essentially of a liquid crystal polymer (LCP) to enhance the cable's tensile strength and hermetically seal it, and an outermost encasing layer to protect the LCP supplemental layer from damage that could otherwise diminish the tensile strength or destroy the moisture barrier properties of the cable gained by adding the supplemental liquid crystal polymer layer. The encasing layer is preferably a thin layer of a smooth, non-crystalline thermoplastic that can be easily removed with chemicals that do not affect the properties of the supplemental layer so that the supplemental layer can be made accessible for promoting the formation of hermetically sealed interfaces between the cable and other structures. Cross-head extrusion methods for coating optical fibers with LCP and encasing layers are described along with laser and ultrasonic bonding techniques for fabricating hermetic packages.
    Type: Application
    Filed: June 24, 2009
    Publication date: July 22, 2010
    Applicant: LINDEN PHOTONICS, INC.
    Inventors: Amaresh Mahapatra, Robert J. Mansfield
  • Patent number: 7570853
    Abstract: The invention relates to high-strength, abrasion-resistant optical fiber cable having a supplemental layer consisting essentially of a liquid crystal polymer (LCP) to enhance the cable's tensile strength and hermetically seal it, and an outermost encasing layer to protect the LCP supplemental layer from damage that could otherwise diminish the tensile strength or destroy the moisture barrier properties of the cable gained by adding the supplemental liquid crystal polymer layer. The encasing layer is preferably a thin layer of a smooth, non-crystalline thermoplastic that can be easily removed with chemicals that do not affect the properties of the supplemental layer so that the supplemental layer can be made accessible for promoting the formation of hermetically sealed interfaces between the cable and other structures. Cross-head extrusion methods for coating optical fibers with LCP and encasing layers are described along with laser and ultrasonic bonding techniques for fabricating hermetic packages.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: August 4, 2009
    Assignee: Linden Photonics, Inc.
    Inventors: Amaresh Mahapatra, Robert J. Mansfield