Patents Assigned to LITEC-LP GmbH
  • Patent number: 10312420
    Abstract: A light emitting device including a housing, a plurality of heat-sinks adjoined to the housing and insulated from each other, a bottom surface of the heat-sinks being exposed to the outside, a light emitting diode mounted on at least one of the heat-sinks via a conductive adhesive, and a molding member encapsulating the light emitting diode and including thermosetting resin, in which a fluoride luminophore including I and IV group elements with fluorine and other luminophore are dispersed in the molding member, and the luminophores are configured to absorb at least a portion of light emitted from the light emitting diode and emit light having a wavelength different from that of the absorbed light.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: June 4, 2019
    Assignees: Seoul Semiconducter Co., Ltd., LITEC-LP Gmbh
    Inventors: Chung Hoon Lee, Walter Tews, Gundula Roth, Detlef Starick
  • Patent number: 9960324
    Abstract: A light-emitting device including a substrate, a first light-emitting diode disposed on the substrate, a molding member encapsulating the first light-emitting diode, and luminophores dispersed in the molding member and including a surface-modified luminophore, in which the surface-modified luminophore includes a fluorinated coating and a fluoride luminophore including a manganese activator. The fluoride luminophore is selected from the group consisting of K2SiF6, Na2SiF6, Rb2SiF6, K2GeF6, Na2GeF6, and Rb2GeF6.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: May 1, 2018
    Assignees: Seoul Semiconductor Co., Ltd., LITEC-LP GmbH
    Inventors: Chung Hoon Lee, Walter Tews, Gundula Roth, Detlef Starick
  • Patent number: 9614129
    Abstract: A light-emitting device including a light-emitting diode and a surface-modified luminophore. The surface-modified luminophore includes a luminophore including a manganese activator and a fluorine compound fixed to the luminophore.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: April 4, 2017
    Assignees: Seoul Semiconductor Co., Ltd., LITEC-LP GMBH
    Inventors: Chung Hoon Lee, Walter Tews, Gundula Roth, Detlef Starick
  • Patent number: 9234129
    Abstract: A surface-modified quantum dot luminophore includes a quantum dot luminophore and a coating includes a fluorinated coating including a fluorinated inorganic agent, a fluorinated organic agent, or a combination of fluorinated inorganic and organic agents, the fluorinated coating generating hydrophobic surface sites and the coating is disposed on the surface of the silicate luminophore.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: January 12, 2016
    Assignees: Seoul Semiconductor Co., Ltd., LITEC-LP GMBH
    Inventors: Chung Hoon Lee, Walter Tews, Gundula Roth, Detlef Starick
  • Patent number: 9196785
    Abstract: Exemplary embodiments of the present invention relate to a light emitting device including a light emitting diode and a surface-modified luminophore. The surface-modified luminophore includes a quantum dot luminophore and a fluorinated coating arranged on the quantum dot luminophore.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: November 24, 2015
    Assignees: Seoul Semiconductor Co., Ltd., LITEC-LP GMBH
    Inventors: Chung Hoon Lee, Walter Tews, Gundula Roth, Detlef Starick
  • Patent number: 8963173
    Abstract: Exemplary embodiments of the present invention relate to light emitting devices including strontium oxyorthosilicate-type phosphors. The light emitting device includes a light emitting diode, which emits light in the UV or visible range, and phosphors disposed around the light emitting diode to absorb light emitted from the light emitting diode and emit light having a different wavelength from the absorbed light. The phosphors include an oxyorthosilicate phosphor having a general formula of Sr3-x-y-zCaxMIIySiO5: Euz with a calcium molar fraction in the range of 0<x?0.05.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: February 24, 2015
    Assignees: Seoul Semiconductor Co., Ltd., LITEC-LP GmbH
    Inventors: Chung Hoon Lee, Walter Tews, Gundula Roth, Detlef Starick
  • Patent number: 8945421
    Abstract: A surface-modified silicate luminophore includes a silicate luminophore and a coating includes at least one of (a) a fluorinated coating including a fluorinated inorganic agent, a fluorinated organic agent, or a combination of fluorinated inorganic and organic agents, the fluorinated coating generating hydrophobic surface sites and (b) a combination of the fluorinated coating and at least one moisture barrier layer. The moisture barrier layer includes MgO, Al2O3, Y2O3, La2O3, Gd2O3, Lu2O3, and SiO2 or the corresponding precursors, and the coating is disposed on the surface of the silicate luminophore.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: February 3, 2015
    Assignees: Seoul Semiconductor Co., Ltd., Litec-LP GmbH
    Inventors: Chung Hoon Lee, Walter Tews, Gundula Roth, Detlef Starick
  • Patent number: 8703014
    Abstract: Exemplary embodiments of the present invention disclose inorganic luminescent substances with Eu2+-doped silicate luminophores, in which solid solutions in the form of mixed phases between alkaline earth metal oxyorthosilicates and rare earth metal oxyorthosilicates are used as base lattices for the Eu2+ activation leading to the luminescence. These luminophores are described by the general formula (1-x) MII3SiO5.xSE2SiO5:Eu, in which MII preferably represents strontium ion or another alkaline earth metal ion, or another divalent metal ion selected from the group consisting of the magnesium, calcium, barium, copper, zinc, and manganese. These ions may be used in addition to strontium and also as mixtures with one another.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: April 22, 2014
    Assignees: Seoul Semiconductor Co., Ltd., LITEC-LP GmbH
    Inventors: Chung Hoon Lee, Walter Tews, Gundula Roth, Detlef Starick
  • Publication number: 20140061690
    Abstract: Exemplary embodiments of the present invention relate to a light emitting device including a light emitting diode and a surface-modified luminophore. The surface-modified luminophore includes a quantum dot luminophore and a fluorinated coating arranged on the quantum dot luminophore.
    Type: Application
    Filed: November 11, 2013
    Publication date: March 6, 2014
    Applicants: LITEC-LP GmBH, Seoul Semiconductor Co., Ltd.
    Inventors: Chung Hoon Lee, Walter Tews, Gundula Roth, Detlef Starick
  • Publication number: 20140061503
    Abstract: A surface-modified quantum dot luminophore includes a quantum dot luminophore and a coating includes a fluorinated coating including a fluorinated inorganic agent, a fluorinated organic agent, or a combination of fluorinated inorganic and organic agents, the fluorinated coating generating hydrophobic surface sites and the coating is disposed on the surface of the silicate luminophore.
    Type: Application
    Filed: November 11, 2013
    Publication date: March 6, 2014
    Applicants: LITEC-LP GmbH, SEOUL SEMICONDUCTOR CO., LTD.
    Inventors: Chung Hoon LEE, Walter Tews, Gundula Roth, Detlef Starick
  • Patent number: 8440106
    Abstract: Exemplary embodiments of the present invention relate to inorganic phosphors based on silicate compounds having improved stability under a resulting radiation load and resistance to atmospheric humidity, which are capable of converting higher-energy excitation radiation, i.e. ultraviolet (UV) or blue light, with high efficiency into a longer-wavelength radiation which may be in the visible spectral range. A calcium molar fraction x having a value between 0 and 0.05 is added to a silicate phosphor having the general formula Sr3-x-y-zCaxMIIySiO5:Euz.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: May 14, 2013
    Assignees: Seoul Semiconductor Co., Ltd., LITEC-LP GmbH
    Inventors: Chung Hoon Lee, Walter Tews, Gundula Roth, Detlef Starick
  • Publication number: 20120181481
    Abstract: Exemplary embodiments of the present invention relate to inorganic phosphors based on silicate compounds having improved stability under a resulting radiation load and resistance to atmospheric humidity, which are capable of converting higher-energy excitation radiation, i.e. ultraviolet (UV) or blue light, with high efficiency into a longer-wavelength radiation which may be in the visible spectral range. A calcium molar fraction x having a value between 0 and 0.05 is added to a silicate phosphor having the general formula Sr3-x-y-zCaxMIIySiO5:Euz.
    Type: Application
    Filed: March 29, 2012
    Publication date: July 19, 2012
    Applicants: LITEC-LP GMBH, SEOUL SEMICONDUCTOR CO., LTD.
    Inventors: Chung Hoon LEE, Walter TEWS, Gundula ROTH, Detlef STARICK
  • Patent number: 8173042
    Abstract: Exemplary embodiments of the present invention relate to inorganic phosphors based on silicate compounds having improved stability under a resulting radiation load and resistance to atmospheric humidity, which are capable of converting higher-energy excitation radiation, i.e. ultraviolet (UV) or blue light, with high efficiency into a longer-wavelength radiation which may be in the visible spectral range. A calcium molar fraction x having a value between 0 and 0.05 is added to a silicate phosphor having the general formula Sr3-x-y-zCaxMIIySiO5:Euz.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: May 8, 2012
    Assignees: Seoul Semiconductor Co., Ltd., LITEC-LP GmbH
    Inventors: Chung Hoon Lee, Walter Tews, Gundula Roth, Detlef Starick
  • Publication number: 20120037850
    Abstract: A surface-modified silicate luminophore includes a silicate luminophore and a coating includes at least one of (a) a fluorinated coating including a fluorinated inorganic agent, a fluorinated organic agent, or a combination of fluorinated inorganic and organic agents, the fluorinated coating generating hydrophobic surface sites and (b) a combination of the fluorinated coating and at least one moisture barrier layer. The moisture barrier layer includes MgO, Al2O3, Y2O3, La2O3, Gd2O3, Lu2O3, and SiO2 or the corresponding precursors, and the coating is disposed on the surface of the silicate luminophore.
    Type: Application
    Filed: July 15, 2011
    Publication date: February 16, 2012
    Applicants: LITEC-LP GMBH, SEOUL SEMICONDUCTOR CO., LTD.
    Inventors: Chung Hoon LEE, Walter TEWS, Gundula ROTH, Detlef STARICK
  • Publication number: 20110147662
    Abstract: Exemplary embodiments of the present invention relate to inorganic phosphors based on silicate compounds having improved stability under a resulting radiation load and resistance to atmospheric humidity, which are capable of converting higher-energy excitation radiation, i.e. ultraviolet (UV) or blue light, with high efficiency into a longer-wavelength radiation which may be in the visible spectral range. A calcium molar fraction x having a value between 0 and 0.05 is added to a silicate phosphor having the general formula Sr3-x-y-zCaxMIIySiO5:Euz.
    Type: Application
    Filed: September 10, 2010
    Publication date: June 23, 2011
    Applicants: SEOUL SEMICONDUCTOR CO., LTD., LITEC-LP GMBH
    Inventors: Chung Hoon LEE, Walter TEWS, Gundula ROTH, Detlef STARICK
  • Publication number: 20100327229
    Abstract: Exemplary embodiments of the present invention disclose inorganic luminescent substances with Eu2+-doped silicate luminophores, in which solid solutions in the form of mixed phases between alkaline earth metal oxyorthosilicates and rare earth metal oxyorthosilicates are used as base lattices for the Eu2+ activation leading to the luminescence. These luminophores are described by the general formula (1-x) MII3SiO5.xSE2SiO5:Eu, in which MII preferably represents strontium ion or another alkaline earth metal ion, or another divalent metal ion selected from the group consisting of the magnesium, calcium, barium, copper, zinc, and manganese. These ions may be used in addition to strontium and also as mixtures with one another.
    Type: Application
    Filed: May 4, 2010
    Publication date: December 30, 2010
    Applicants: Seoul Semiconductor Co., Ltd., LITEC-LP GmbH
    Inventors: Chung Hoon LEE, Walter Tews, Gundula Roth, Detlef Starick