Patents Assigned to Lockheed Martin Advanced Energy Storage, LLC
  • Patent number: 10065977
    Abstract: Flow batteries incorporating an active material with one or more catecholate ligands can have a number of desirable operating features. Commercial syntheses of catechol produce significant quantities of hydroquinone as a byproduct, which presently has limited value in the battery industry and can represent a significant waste disposal issue at industrial production scales. Using a concerted, high-yield process, low-value hydroquinone can be transformed into high-value 1,2,4-trihydroxybenzene, which can be a desirable ligand for active materials of relevance in the flow battery industry.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: September 4, 2018
    Assignee: Lockheed Martin Advanced Energy Storage, LLC
    Inventors: Scott Thomas Humbarger, Matthew Millard
  • Patent number: 10014546
    Abstract: This invention is directed to aqueous redox flow batteries comprising redox-active metal ligand coordination compounds. The compounds and configurations described herein enable flow batteries with performance and cost parameters that represent a significant improvement over that previous known in the art.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: July 3, 2018
    Assignee: Lockheed Martin Advanced Energy Storage, LLC
    Inventors: John Goeltz, Desiree Amadeo, Arthur J. Esswein, Thomas D. Jarvi, Evan R. King, Steven Y. Reece, Nitin Tyagi
  • Patent number: 9997798
    Abstract: Stable solutions comprising high concentrations of charged coordination complexes, including iron hexacyanides are described, as are methods of preparing and using same in chemical energy storage systems, including flow battery systems. The use of these compositions allows energy storage densities at levels unavailable by other iron hexacyanide systems.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: June 12, 2018
    Assignee: Lockheed Martin Advanced Energy Storage, LLC
    Inventors: Arthur J. Esswein, John Goeltz, Desiree Amadeo
  • Patent number: 9997799
    Abstract: Stable solutions comprising high concentrations of charged coordination complexes, including iron hexacyanides are described, as are methods of preparing and using same in chemical energy storage systems, including flow battery systems. The use of these compositions allows energy storage densities at levels unavailable by other iron hexacyanide systems.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: June 12, 2018
    Assignee: Lockheed Martin Advanced Energy Storage, LLC
    Inventors: Arthur J. Esswein, John Goeltz, Desiree Amadeo
  • Patent number: 9991544
    Abstract: This invention is directed to aqueous redox flow batteries comprising redox-active metal ligand coordination compounds. The compounds and configurations described herein enable flow batteries with performance and cost parameters that represent a significant improvement over that previous known in the art.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: June 5, 2018
    Assignee: Lockheed Martin Advanced Energy Storage, LLC
    Inventors: John Goeltz, Desiree Amadeo, Arthur J. Esswein, Thomas D. Jarvi, Evan R. King, Steven Y. Reece, Nitin Tyagi
  • Patent number: 9991543
    Abstract: Provided are compositions having the formula MnTi(L1)(L2)(L3) wherein L1 is a catecholate, and L2 and L3 are each independently selected from catecholates, ascorbate, citrate, glycolates, a polyol, gluconate, glycinate, hydroxyalkanoates, acetate, formate, benzoates, malate, maleate, phthalates, sarcosinate, salicylate, oxalate, a urea, polyamine, aminophenolates, acetylacetone or lactate; each M is independently Na, Li, or K; n is 0 or an integer from 1-6. Also provided are energy storage systems.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: June 5, 2018
    Assignee: Lockheed Martin Advanced Energy Storage, LLC
    Inventors: Arthur J. Esswein, Steven Y. Reece, Evan R. King, John Goeltz, Desiree D. Amadeo
  • Patent number: 9929425
    Abstract: Stable solutions comprising high concentrations of charged coordination complexes, including iron hexacyanides are described, as are methods of preparing and using same in chemical energy storage systems, including flow battery systems. The use of these compositions allows energy storage densities at levels unavailable by other iron hexacyanide systems.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: March 27, 2018
    Assignee: Lockheed Martin Advanced Energy Storage, LLC
    Inventors: Arthur J. Esswein, John Goeltz, Desiree Amadeo
  • Patent number: 9899694
    Abstract: The invention concerns flow batteries comprising: a first aqueous electrolyte comprising a first redox active material; a second aqueous electrolyte comprising a second redox active material; a first electrode in contact with the first aqueous electrolyte; a second electrode in contact with the second aqueous electrolyte and a separator disposed between the first aqueous electrolyte and the second aqueous electrolyte; the flow battery having an open circuit potential of at least 1.4 V, and is capable of operating or is operating at a current density at least about 50 mA/cm2, wherein both of the first and second redox active materials remain soluble in both the charged and discharged states. In certain embodiments, the redox active materials are metal ligand coordination compounds. The disclosure also describes systems comprising these flow batteries and methods of them.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: February 20, 2018
    Assignee: Lockheed Martin Advanced Energy Storage, LLC
    Inventors: Arthur J. Esswein, Steven Y. Reece, John Goeltz, Evan R. King, Desiree Amadeo, Nitin Tyagi, Thomas D. Jarvi
  • Patent number: 9899696
    Abstract: Electrolyte solutions for flow batteries and other electrochemical systems can contain a dissolved iron hexacyanide complex as an active material. Alkaline buffering can be desirable in such electrolyte solutions to promote stability of the active material. However, the buffer material can undesirably decrease solubility of the iron hexacyanide complex to unacceptable levels in some instances. Compositions with increased concentrations of iron hexacyanide can include an aqueous solution containing a dissolved iron hexacyanide complex, and a solid buffer material in contact with the aqueous solution. The solid buffer material is present at an amount greater than that needed to produce a saturation concentration of the solid buffer material in the aqueous solution. Flow batteries and other electrochemical systems can contain the compositions as an electrolyte solution.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: February 20, 2018
    Assignee: Lockheed Martin Advanced Energy Storage, LLC
    Inventor: John Goeltz
  • Patent number: 9865893
    Abstract: This invention is directed to aqueous redox flow batteries comprising ionically charged redox active materials and separators, wherein the separator is about 100 microns or less and the flow battery is capable of (a) operating with a current efficiency of at least 85% with a current density of at least about 100 mA/cm2; (b) operating with a round trip voltage efficiency of at least 60% with a current density of at least about 100 mA/cm2; and/or (c) giving rise to diffusion rates through the separator for the first active material, the second active material, or both, of about 1×10?7 mol/cm2-sec or less.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: January 9, 2018
    Assignee: Lockheed Martin Advanced Energy Storage, LLC
    Inventors: Arthur J. Esswein, Steven Y. Reece, Thomas H. Madden, Thomas D. Jarvi, John Goeltz, Desiree Amadeo, Evan R. King, Nitin Tyagi
  • Patent number: 9837679
    Abstract: Active materials for flow batteries can include various coordination compounds formed from transition metals. Some compositions containing coordination compounds can include a substituted catecholate ligand having a structure of in a neutral form or a salt form, in which Z is a heteroatom functional group bound to the substituted catecholate ligand at an open aromatic ring position and n is an integer ranging between 1 and 4. When more than one Z is present, each Z can be the same or different. Electrolyte solutions can include such coordination compounds, and such electrolyte solutions can be incorporated within a flow battery.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: December 5, 2017
    Assignee: Lockheed Martin Advanced Energy Storage, LLC
    Inventor: Steven Y. Reece
  • Patent number: 9768463
    Abstract: This invention is directed to aqueous redox flow batteries comprising redox-active metal ligand coordination compounds. The compounds and configurations described herein enable flow batteries with performance and cost parameters that represent a significant improvement over that previous known in the art.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: September 19, 2017
    Assignee: Lockheed Martin Advanced Energy Storage, LLC
    Inventors: John Goeltz, Desiree Amadeo, Arthur J. Esswein, Thomas D. Jarvi, Evan R. King, Steven Y. Reece, Nitin Tyagi
  • Patent number: 9742021
    Abstract: Stable solutions comprising high concentrations of charged coordination complexes, including iron hexacyanides are described, as are methods of preparing and using same in chemical energy storage systems, including flow battery systems. The use of these compositions allows energy storage densities at levels unavailable by other iron hexacyanide systems.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: August 22, 2017
    Assignee: Lockheed Martin Advanced Energy Storage, LLC
    Inventors: Arthur J. Esswein, John Goeltz, Desiree Amadeo
  • Patent number: 9692077
    Abstract: This invention is directed to aqueous redox flow batteries comprising ionically charged redox active materials and ionomer membranes, wherein the charge of the redox active materials is of the same sign as that of the ionomer, so as to confer specific improvements.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: June 27, 2017
    Assignee: LOCKHEED MARTIN ADVANCED ENERGY STORAGE, LLC
    Inventors: Arthur J. Esswein, John Goeltz, Steven Y. Reece, Evan R. King, Desiree Amadeo, Nitin Tyagi, Thomas D. Jarvi
  • Patent number: 9559374
    Abstract: The invention concerns flow batteries comprising: a first half-cell comprising: (i) a first aqueous electrolyte comprising a first redox active material; and a first carbon electrode in contact with the first aqueous electrolyte; (ii) a second half-cell comprising: a second aqueous electrolyte comprising a second redox active material; and a second carbon electrode in contact with the second aqueous electrolyte; and (iii) a separator disposed between the first half-cell and the second half-cell; the first half-cell having a half-cell potential equal to or more negative than about ?0.3 V with respect to a reversible hydrogen electrode; and the first aqueous electrolyte having a pH in a range of from about 8 to about 13, wherein the flow battery is capable of operating or is operating at a current density at least about 25 mA/cm2.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: January 31, 2017
    Assignee: Lockheed Martin Advanced Energy Storage, LLC
    Inventors: Arthur J. Esswein, Steven Y. Reece, John Goeltz, Evan R. King, Desiree Amadeo, Nitin Tyagi, Thomas D. Jarvi
  • Publication number: 20160233531
    Abstract: The present invention is directed to a redox flow battery comprising at least one electrochemical cell in fluid communication with a balancing cell, said balancing cell comprising: a first and second half-cell chamber, wherein the first half-cell chamber comprises a first electrode in contact with a first aqueous electrolyte of the redox flow battery; and wherein the second half-cell chamber comprises a second electrode in contact with a second aqueous electrolyte, said second electrode comprising a catalyst for the generation of O2.
    Type: Application
    Filed: September 24, 2014
    Publication date: August 11, 2016
    Applicant: Lockheed Martin Advanced Energy Storage, LLC
    Inventors: Steven Y. REECE, Paravastu BADRINARAYANAN, Nitin TYAGI, Timothy B. GREJTAK
  • Patent number: 9382274
    Abstract: Provided are compositions having the formula MnTi(L1)(L2)(L3) wherein L1 is a catecholate, and L2 and L3 are each independently selected from catecholates, ascorbate, citrate, glycolates, a polyol, gluconate, glycinate, hydroxyalkanoates, acetate, formate, benzoates, malate, maleate, phthalates, sarcosinate, salicylate, oxalate, a urea, polyamine, aminophenolates, acetylacetone or lactate; each M is independently Na, Li, or K; n is 0 or an integer from 1-6. Also provided are energy storage systems.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: July 5, 2016
    Assignee: Lockheed Martin Advanced Energy Storage, LLC
    Inventors: Arthur J. Esswein, Steven Y. Reece, Evan R. King, John Goeltz, Desiree D. Amadeo