Patents Assigned to Lockheed Martin Energy Research Corporation
  • Publication number: 20010014423
    Abstract: Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.
    Type: Application
    Filed: March 27, 2001
    Publication date: August 16, 2001
    Applicant: LOCKHEED MARTIN ENERGY RESEARCH CORPORATION
    Inventor: John B. Bates
  • Patent number: 6272924
    Abstract: A human extender controller for interface between a human operator and a physical object through a physical plant. The human extender controller uses an inner-feedback loop to increase the equivalent damping of the operating system to stabilize the system when it contacts with the environment and reduces the impact of the environment variation by utilizing a high feedback gain, determined by a root locus sketch. Because the stability of the human extender controller of the present invention is greatly enhanced over that of the prior art, the present invention is able to achieve a force reflection ratio 500 to 1 and capable of handling loads above the two (2) ton range.
    Type: Grant
    Filed: February 19, 1999
    Date of Patent: August 14, 2001
    Assignee: Lockheed Martin Energy Research Corporation
    Inventor: John F. Jansen
  • Patent number: 6265025
    Abstract: The present invention relates to a method for the rapid production of homogeneous, ultrafine inorganic material via liquid-phase reactions. The method of the present invention employs electrohydrodynamic flows in the vicinity of an electrified injector tube placed inside another tube to induce efficient turbulent mixing of two fluids containing reactive species. The rapid micromixing allows liquid-phase reactions to be conducted uniformly at high rates. This approach allows continuous production of non-agglomerated, monopispersed, submicron-sized, sphere-like powders.
    Type: Grant
    Filed: September 16, 1999
    Date of Patent: July 24, 2001
    Assignee: Lockheed Martin Energy Research Corporation
    Inventors: David W. DePaoli, Zhong Cheng Hu, Constantinos Tsouris
  • Patent number: 6259374
    Abstract: Systems and methods are described for passive pavement-mounted acoustical alert of the occupants of a vehicle. A method of notifying a vehicle occupant includes providing a driving medium upon which a vehicle is to be driven; and texturing a portion of the driving medium such that the textured portion interacts with the vehicle to produce audible signals, the textured portion pattern such that a linguistic message is encoded into the audible signals. The systems and methods provide advantages because information can be conveyed to the occupants of the vehicle based on the location of the vehicle relative to the textured surface.
    Type: Grant
    Filed: September 15, 1999
    Date of Patent: July 10, 2001
    Assignee: Lockheed Martin Energy Research Corporation
    Inventors: Roger A. Kisner, Richard L. Anderson, Charles L. Carnal, James O. Hylton, Samuel S. Stevens
  • Patent number: 6236179
    Abstract: A circuit and method for controlling a rotating machine (11) in the constant horsepower range above base speed uses an inverter (15) having SCR's (T1-T6) connected in series with the primary commutation switches (Q1-Q6) to control turn off of the primary commutation switches and to protect the primary commutation switches from faults. The primary commutation switches (Q1-Q6) are controlled by a controller (14), to fire in advance or after a time when the back emf equals the applied voltage, and then to turn off after a precise dwell time, such that suitable power is developed at speeds up to at least six times base speed.
    Type: Grant
    Filed: February 21, 2000
    Date of Patent: May 22, 2001
    Assignee: Lockheed Martin Energy Research Corporation
    Inventors: Jack Steward Lawler, John Milton Bailey
  • Publication number: 20010000849
    Abstract: A portable lightweight cooling apparatus for cooling a human body is disclosed, having a channeled sheet which absorbs sweat and/or evaporative liquid, a layer of highly conductive fibers adjacent the channeled sheet; and, an air-moving device for moving air through the channeled sheet, wherein the layer of fibers redistributes heat uniformly across the object being cooled, while the air moving within the channeled sheet evaporates sweat and/or other evaporative liquid, absorbs evaporated moisture and the uniformly distributed heat generated by the human body, and discharges them into the environment.
    Type: Application
    Filed: December 22, 2000
    Publication date: May 10, 2001
    Applicant: Lockheed Martin Energy Research Corporation
    Inventors: Moshe Siman-Tov, Jerry Allen Crabtree
  • Patent number: 6219137
    Abstract: A probe for a surface-enhanced Raman scattering spectrometer is provided for injection into a cell in order to detect trace amounts of a compound within that cell. The probe has a spherical shape with a diameter less than one micrometer and preferably in the 10-500 nanometer range. The nanoprobes can have a receptor coating related to the specific compound to be detected by the probe. A process for producing, injecting and utilizing the nanoprobes are described.
    Type: Grant
    Filed: December 3, 1998
    Date of Patent: April 17, 2001
    Assignee: Lockheed Martin Energy Research Corporation
    Inventor: Tuan Vo-Dinh
  • Patent number: 6212939
    Abstract: A method and device are provided for chemical sensing using cantilevers that do not use chemically deposited, chemically specific layers. This novel device utilizes the adsorption-induced variation in the surfaces states on a cantilever. The methodology involves exciting charge carriers into or out of the surface states with photons having increasing discrete levels of energy. The excitation energy is provided as discrete levels of photon energy by scanning the wavelength of an exciting source that is illuminating the cantilever surface. When the charge carriers are excited into or out of the surface states, the cantilever bending changes due to changes in surface stress. The amount of cantilever bending with respect to an identical cantilever as a function of excitation energy is used to determine the energy levels associated with adsorbates.
    Type: Grant
    Filed: September 24, 1999
    Date of Patent: April 10, 2001
    Assignee: Lockheed Martin Energy Research Corporation
    Inventor: Thomas G. Thundat
  • Patent number: 6208982
    Abstract: The system of the present invention may “solve” a variety of inverse physical problem types by using neural network techniques. In operation, the present invention may generate data sets characterizing a particular starting condition of a physical process (such as data sets characterizing the parameters of an initial metal die), based upon an ending condition of the physical process (such as the parameters of the metal part to be stamped by the die). In one embodiment, the system of the present invention may generate a plurality of training data sets, each training data set characterizing a sample ending condition, the physical process that results in the sample ending condition, and a sample starting condition of the physical process. The training data sets may then be applied to a neural network so as to train the network.
    Type: Grant
    Filed: July 30, 1997
    Date of Patent: March 27, 2001
    Assignee: Lockheed Martin Energy Research Corporation
    Inventors: John D. Allen, Jr., Nenad Ivezic, Gerard M. Ludtka, Thomas Zacharia
  • Patent number: 6174503
    Abstract: A solvent composition and corresponding method for extracting cesium (Cs) from aqueous neutral and alkaline solutions containing Cs and perhaps other competing metal ions is described. The method entails contacting an aqueous Cs-containing solution with a solvent consisting of a specific class of lipophilic calix[4]arene-crown ether extractants dissolved in a hydrocarbon-based diluent containing a specific class of alkyl-aromatic ether alcohols as modifiers. The cesium values are subsequently recovered from the extractant, and the solvent subsequently recycled, by contacting the Cs-containing organic solution with an aqueous stripping solution. This combined extraction and stripping method is especially useful as a process for removal of the radionuclide cesium-137 from highly alkaline waste solutions which are also very concentrated in sodium and potassium.
    Type: Grant
    Filed: September 3, 1998
    Date of Patent: January 16, 2001
    Assignee: Lockheed Martin Energy Research Corporation
    Inventors: Bruce A. Moyer, Richard A. Sachleben, Peter V. Bonnesen, Derek J. Presley
  • Patent number: 6168884
    Abstract: A thin-film rechargeable battery includes a cathode film; including a lithium transition metal oxide, an electrolyte film coupled to the cathode film, the electrolyte film being substantially nonreactive with oxidizing materials and with metallic lithium, an anode current collector coupled to the electrolyte film; and an overlying layer coupled to the anode current collector. The thin-film rechargeable battery is activated during an initial charge by electrochemical plating of a metallic lithium anode between the anode current collector and the electrolyte film. The plating of the anode during charging and the stripping of the anode layer during discharging are essentially reversible. Therefore, almost no diminishment of discharge capacity occurs, even after many discharge and charge cycles. Other advantages include no need for special packaging for shipping and handling.
    Type: Grant
    Filed: April 2, 1999
    Date of Patent: January 2, 2001
    Assignee: Lockheed Martin Energy Research Corporation
    Inventors: Bernd J. Neudecker, Nancy J. Dudney, John B. Bates
  • Patent number: 6167748
    Abstract: An improved multi-element apparatus for detecting the presence of at least one chemical, biological or physical component in a monitored area comprising an array or single set of the following elements: a capacitive transducer having at least one cantilever spring element secured thereto, the cantilever element having an area thereof coated with a chemical having an affinity for the component to be detected; a pick-up plate positioned adjacent to the cantilever element at a distance such that a capacitance between the cantilever element and the pick-up plate changes as the distance between the cantilever element and the pick-up plate varies, the change in capacitance being a measurable variation; a detection means for measuring the measurable variation in the capacitance between the cantilever element and the pick-up plate that forms a measurement channel signal; and at least one feedback cantilever spring element positioned apart from the coated cantilever element, the cantilever element substantially unaffe
    Type: Grant
    Filed: August 31, 1998
    Date of Patent: January 2, 2001
    Assignees: Lockheed Martin Energy Research Corporation, University of Tennessee Research Corporation
    Inventors: Charles L. Britton, Jr., Robert J. Warmack, William L. Bryan, Robert L. Jones, Patrick Ian Oden, Thomas Thundat
  • Patent number: 6132677
    Abstract: A method for making a radioactive article such as wire, includes the steps of providing a metal article having a first shape, such a cylinder, that is either radioactive itself or can be converted to a second, radioactive isotope by irradiation; melting the metal article one or more times; optionally adding an alloying metal to the molten metal in order to enhance ductility or other properties; placing the metal article having the first shape (e.g., cylindrical) into a cavity in the interior of an extrusion body (e.g.
    Type: Grant
    Filed: April 26, 1999
    Date of Patent: October 17, 2000
    Assignee: Lockheed Martin Energy Research Corporation
    Inventor: Evan K. Ohriner
  • Patent number: 6118124
    Abstract: Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation.
    Type: Grant
    Filed: January 18, 1996
    Date of Patent: September 12, 2000
    Assignee: Lockheed Martin Energy Research Corporation
    Inventors: Thomas G. Thundat, Robert J. Warmack, Eric A. Wachter
  • Patent number: 6111770
    Abstract: An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state.
    Type: Grant
    Filed: October 28, 1997
    Date of Patent: August 29, 2000
    Assignee: Lockheed Martin Energy Research Corporation
    Inventor: Fang Z. Peng
  • Patent number: 6110343
    Abstract: An electrospray apparatus uses a microchannel formed in a microchip. Fluid is pumped through the channel to an outlet orifice using either hydraulic or electrokinetic means. An electrospray is generated by establishing a sufficient potential difference between the fluid at the outlet orifice and a target electrode spaced from the outlet orifice. Electrokinetic pumping is also utilized to provide additional benefits to microchip devices.
    Type: Grant
    Filed: October 4, 1996
    Date of Patent: August 29, 2000
    Assignee: Lockheed Martin Energy Research Corporation
    Inventors: J. Michael Ramsey, Roswitha S. Ramsey
  • Patent number: 6106640
    Abstract: Intermetallic alloys composed essentially of: 15.5% to 17.0% Al, 3.5% to 5.5% Mo, 4% to 8% Cr, 0.04% to 0.2% Zr, 0.04% to 1.5% B, balance Ni, are characterized by melting points above 1200.degree. C. and superior strengths at temperatures above 1000.degree. C.
    Type: Grant
    Filed: June 8, 1998
    Date of Patent: August 22, 2000
    Assignee: Lockheed Martin Energy Research Corporation
    Inventor: Chain T. Liu
  • Patent number: 6102621
    Abstract: The invention is a method and a composition of a mixture for degradation and immobilization of contaminants in soil and groundwater. The oxidative particle mixture and method includes providing a material having a minimal volume of free water, mixing at least one inorganic oxidative chemical in a granular form with a carrier fluid containing a fine grained inorganic hydrophilic compound and injecting the resulting mixture into the subsurface. The granular form of the inorganic oxidative chemical dissolves within the areas of injection, and the oxidative ions move by diffusion and/or advection, therefore extending the treatment zone over a wider area than the injection area. The organic contaminants in the soil and groundwater are degraded by the oxidative ions, which form solid byproducts that can sorb significant amounts of inorganic contaminants, metals, and radionuclides for in situ treatment and immobilization of contaminants.
    Type: Grant
    Filed: May 1, 1998
    Date of Patent: August 15, 2000
    Assignee: Lockheed Martin Energy Research Corporation
    Inventors: Robert L. Siegrist, Lawrence C. Murdoch
  • Patent number: 6096559
    Abstract: A calorimeter sensor apparatus is developed utilizing microcantilevered spring elements for detecting thermal changes within a sample containing biomolecules which undergo chemical and biochemical reactions. The spring element includes a bimaterial layer of chemicals on a coated region on at least one surface of the microcantilever. The chemicals generate a differential thermal stress across the surface upon reaction of the chemicals with an analyte or biomolecules within the sample due to the heat of chemical reactions in the sample placed on the coated region. The thermal stress across the spring element surface creates mechanical bending of the microcantilever. The spring element has a low thermal mass to allow detection and measuring of heat transfers associated with chemical and biochemical reactions within a sample placed on or near the coated region. A second surface may have a different material, or the second surface and body of microcantilever may be of an inert composition.
    Type: Grant
    Filed: March 16, 1998
    Date of Patent: August 1, 2000
    Assignee: Lockheed Martin Energy Research Corporation
    Inventors: Thomas G. Thundat, Mitchel J. Doktycz
  • Patent number: 6096217
    Abstract: The present invention comprises a supported liquid membrane carrier liquid with a dielectric constant between approximately 20 and 32, more particularly between 22 and 28, and preferably about 24, and the use of that carrier liquid in a supported liquid membrane device to extract one or more chemical species from a feed liquid. The invention further comprises such a device where a temperature gradient is maintained between any of the feed, carrier, or strip liquids. In another embodiment of the invention, any of the feed, carrier, or strip liquids are conditioned, for example, by passing the liquids through a purifier, or replacing lost carrier liquid. In another embodiment of the invention, two or more devices are connected in series or parallel.
    Type: Grant
    Filed: February 16, 1999
    Date of Patent: August 1, 2000
    Assignees: Lockheed Martin Energy Research Corporation, Commodore Separation Technologies, Inc., The University of Tennessee Research Corporation
    Inventors: Srinivas Kilambi, Bruce A. Moyer, R. Bruce Robinson, Peter V. Bonnesen