Patents Assigned to Marlow Industries, Inc.
  • Publication number: 20110271994
    Abstract: In certain embodiments, a hot side heat exchanger (HSHX) includes a folded fin structure including a plurality of fins. Each of the plurality of fins is formed from a composite fin material having a first fin layer positioned between a second fin layer and a third fin layer, the first fin layer being a first material and the second and third fin layers being a second material. A base plate is in thermal communication with the plurality of folded fins. The base plate is formed from a composite base plate material having a first base plate layer and a second base plate layer, the first base plate layer being a first material and the second base plate layer being the second material. The first material has a greater thermal conductivity than the second material and the second material has greater corrosion resistance and high temperature strength than the first material.
    Type: Application
    Filed: May 4, 2011
    Publication date: November 10, 2011
    Applicant: Marlow Industries, Inc.
    Inventor: Michael D. Gilley
  • Patent number: 7871847
    Abstract: A method for creating an array of thermoelectric elements includes applying a first coating of dielectric material to P-type wafers and N-type wafers to form coated P-type wafers and coated N-type wafers. A P/N-type ingot is formed from the coated P-type wafers and the coated N-type wafers. The coated P-type wafers and the coated N-type wafers are alternatingly arranged in the P/N-type ingot. P/N-type wafers comprising P-type elements and N-type elements are sliced from the P/N-type ingot and a second coating of the dielectric material is applied to the P/N-type wafers to form coated P/N-type wafers. Furthermore, a P/N-type array from the coated P/N-type wafers.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: January 18, 2011
    Assignee: Marlow Industries, Inc.
    Inventor: Joshua E. Moczygemba
  • Publication number: 20100199687
    Abstract: A temperature control device includes a thermoelectric device and a first sink. The thermoelectric device includes a plurality of thermoelectric elements electrically interconnected with one another by a plurality of electrical interconnects which are coupled between an interior surface of a first plate and an interior surface of a second plate. The first sink has a flat bottom and a plurality of generally parallel fins extending out of the flat bottom. Also, the flat bottom is coupled to an exterior surface of the first plate by a coupling media that includes a resilient and thermally-conductive pad.
    Type: Application
    Filed: February 10, 2010
    Publication date: August 12, 2010
    Applicant: MARLOW INDUSTRIES, INC.
    Inventors: Mark C. Woods, Leonard J. Recine, James L. Bierschenk, Overton L. Parish
  • Patent number: 7763792
    Abstract: A thermoelectric module is provided that includes a first thermally conductive plate with a first array of thermoelectric elements coupled to it. The first array of thermoelectric elements includes a first plurality of thermoelectric elements. The thermoelectric module also includes a second thermally conductive plate coupled to the first array of thermoelectric elements, and a second array of thermoelectric elements coupled to the second plate. The second array of thermoelectric elements includes a second plurality of thermoelectric elements. A third thermally conductive plate is coupled to the second array of thermoelectric elements. The thermoelectric module also includes a portion of each thermoelectric element of the first and second pluralities of thermoelectric elements being coplanar with at least a portion of every other thermoelectric element of the first and second pluralities of thermoelectric elements.
    Type: Grant
    Filed: February 14, 2005
    Date of Patent: July 27, 2010
    Assignee: Marlow Industries, Inc.
    Inventors: Jeffrey W. Sharp, James L. Bierschenk
  • Publication number: 20100081191
    Abstract: A well block for use with a Polymerase Chain Reaction (PCR) Cycler may include a body for holding a plurality of specimen vials, a base for attaching the well block to a temperature control device, and a temperature plate coupled to the base. Further, the temperature plate may include an anisotropic material for transferring thermal energy between the body and the temperature control device.
    Type: Application
    Filed: September 25, 2009
    Publication date: April 1, 2010
    Applicant: Marlow Industries, Inc.
    Inventor: Mark C. Woods
  • Patent number: 7619158
    Abstract: A method of forming a thermoelectric device includes extruding a P/N-type billet to form a P/N-type extrusion having a first plurality of P-type regions and a first plurality of N-type regions. The P/N-type extrusion is sliced into a plurality of P/N-type wafers. A diffusion barrier metallization is applied to at least a subset of the P-type regions and N-type regions. One side of at least one P/N-type wafer is attached to a temporary substrate. The P/N-type regions of the P/N-type wafer are separated into an array of isolated P-type and N-type elements. The array of elements are coupled to a first plate having a first patterned metallization to form a thermoelectric circuit. The temporary substrate and bonding media may be detached from the P-type and N-type elements. The thermoelectric circuit may be coupled with a second plate at a second end of the thermoelectric circuit, second plate having a second patterned metallization.
    Type: Grant
    Filed: July 22, 2004
    Date of Patent: November 17, 2009
    Assignee: Marlow Industries, Inc.
    Inventors: Jeffrey W. Sharp, James L. Bierschenk, Joshua E. Moczygemba
  • Publication number: 20090211619
    Abstract: A thermoelectric device includes a plurality of thermoelectric elements coupled between a first plate and a second plate. The plurality of thermoelectric elements are electrically interconnected with one another by a plurality of electrical interconnects and the plurality of thermoelectric elements include at least one thermoelectric element comprising a material having the formula AxByCz, where A is one or more components selected from the group consisting of group II cations and mixtures thereof, B is one or more components selected from the group consisting of group I cations and mixtures thereof, and C is one or more components selected from the group consisting of group V anions and mixtures thereof, and x, y, and z are molar ratios.
    Type: Application
    Filed: February 23, 2009
    Publication date: August 27, 2009
    Applicant: Marlow Industries, Inc.
    Inventors: Jeff Sharp, Alan J. Thompson
  • Patent number: 7531739
    Abstract: A method of manufacturing a thermoelectric module is provided. The method includes mounting a thermoelectric material to a substrate such that a portion of the thermoelectric material covers a removable pattern. The thermoelectric material is then segmented and the removable pattern is removed. The portions of the thermoelectric material which were covering the removable pattern are also removed, leaving the portions of the thermoelectric material not covering the removable pattern attached to the substrate.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: May 12, 2009
    Assignee: Marlow Industries, Inc.
    Inventor: Joshua E. Moczygemba
  • Publication number: 20090093078
    Abstract: A method for creating an array of thermoelectric elements includes applying a first coating of dielectric material to P-type wafers and N-type wafers to form coated P-type wafers and coated N-type wafers. A P/N-type ingot is formed from the coated P-type wafers and the coated N-type wafers. The coated P-type wafers and the coated N-type wafers are alternatingly arranged in the P/N-type ingot. P/N-type wafers comprising P-type elements and N-type elements are sliced from the P/N-type ingot and a second coating of the dielectric material is applied to the P/N-type wafers to form coated P/N-type wafers. Furthermore, a P/N-type array from the coated P/N-type wafers.
    Type: Application
    Filed: September 29, 2008
    Publication date: April 9, 2009
    Applicant: Marlow Industries, Inc.
    Inventor: Joshua E. Moczygemba
  • Publication number: 20090090544
    Abstract: A method includes providing a base. At least one lead is deposited on the base, the at least one lead including a trace of electrically conductive material having a first end and a second end. A dielectric layer is deposited on a portion of the at least one lead between the first end and the second end. A sealing surface is deposited on a portion of the dielectric layer, the sealing surface including a contiguous shape of metal separating an enclosed area of the base located inside the contiguous shape from an open area of the base located outside the contiguous shape. The first end of the at least one lead is located in the enclosed area and the second end of the at least one lead is located in the open area. Moreover, the dielectric layer electrically insulates the at least one lead from the sealing surface.
    Type: Application
    Filed: September 12, 2008
    Publication date: April 9, 2009
    Applicant: Marlow Industries, Inc.
    Inventors: Jay Scott Rawot, James Charles Williams, David Kent Finfrock
  • Publication number: 20090090409
    Abstract: A method for creating an array of thermoelectric elements may include providing a rigid block including P-type material layers and N-type material layers stacked in an alternating relationship and bonded together by an adhesive. First channels may be formed in the block parallel to the P-type material layers and the N-type material layers and may partially extend through a depth of the block leaving an uncut bottom on the block. The first channels may be filled with an electrically and thermally insulating material and second channels may be formed in the block, transverse to the first channels. The second channels may partially extend through the depth of the block. The second channels may be filled with the electrically and thermally insulating material and the uncut bottom may be removed from the block.
    Type: Application
    Filed: September 26, 2008
    Publication date: April 9, 2009
    Applicant: Marlow Industries, Inc.
    Inventor: Joshua E. Moczygemba
  • Publication number: 20080245397
    Abstract: A method of forming an P/N-type array of P-type and N-type material includes stacking a plurality of P-type material wafers and a plurality of N-type material wafers into a P/N-type array. At least one spacer is provided between adjacent wafers. The P-type material wafers and the N-type material wafers are boned together the into a composite P/N-type brick. The method may also include providing a second composite P/N-type brick. A plurality of channels and fingers are created in the first and second composite P/N-type bricks. The first and second composite P/N-type bricks are fit together to form a P/N-type mosaic. Alternatively, the method may include providing a single P/N-type brick. A plurality of channels is created in the composite P/N-type brick. The channels are then back filled with an electrically and thermally insulating adhesive so that a P/N-type grid of P-type elements and N-type elements is formed.
    Type: Application
    Filed: April 4, 2007
    Publication date: October 9, 2008
    Applicant: Marlow Industries, Inc.
    Inventors: Joshua E. Moczygemba, James L. Bierschenk
  • Publication number: 20040261830
    Abstract: A method of forming a thermoelectric device includes extruding a P/N-type billet to form a P/N-type extrusion having a first plurality of P-type regions and a first plurality of N-type regions. The P/N-type extrusion is sliced into a plurality of P/N-type wafers. A diffusion barrier metallization is applied to at least a subset of the P-type regions and N-type regions. One side of at least one P/N-type wafer is attached to a temporary substrate. The P/N-type regions of the P/N-type wafer are separated into an array of isolated P-type and N-type elements. The array of elements are coupled to a first plate having a first patterned metallization to form a thermoelectric circuit. The temporary substrate and bonding media may be detached from the P-type and N-type elements. The thermoelectric circuit may be coupled with a second plate at a second end of the thermoelectric circuit, second plate having a second patterned metallization.
    Type: Application
    Filed: July 22, 2004
    Publication date: December 30, 2004
    Applicant: MARLOW INDUSTRIES, INC.
    Inventors: Jeffrey W. Sharp, James L. Bierschenk, Joshua E. Moczygemba
  • Publication number: 20040079407
    Abstract: A method of forming thermoelectric materials includes combining at least one P-type extrusion with at least one N-type extrusion to form a first P/N-type billet. The P/N-type billet may be extruded to form a first P/N-type extrusion having at least one P-type region, and at least one N-type region. The P/N-type extrusion may be segmented into a plurality of P/N-type extrusion segments. In a particular embodiment, a plurality of the P/N-type extrusion segments may be combined to form a second P/N-type billet. The second P/N-type billet may be extruded to form a second P/N-type extrusion having a second plurality of P-type regions and a second plurality of N-type regions.
    Type: Application
    Filed: December 5, 2003
    Publication date: April 29, 2004
    Applicant: Marlow Industries, Inc., a Texas corporation
    Inventor: Jeffrey W. Sharp
  • Patent number: 6660925
    Abstract: A method of forming thermoelectric materials includes combining at least one P-type extrusion with at least one N-type extrusion to form a first P/N-type billet. The P/N-type billet may be extruded to form a first P/N-type extrusion having at least one P-type region, and at least one N-type region. The P/N-type extrusion may be segmented into a plurality of P/N-type extrusion segments. In a particular embodiment, a plurality of the P/N-type extrusion segments may be combined to form a second P/N-type billet. The second P/N-type billet may be extruded to form a second P/N-type extrusion having a second plurality of P-type regions and a second plurality of N-type regions.
    Type: Grant
    Filed: June 1, 2001
    Date of Patent: December 9, 2003
    Assignee: Marlow Industries, Inc.
    Inventor: Jeffrey W. Sharp
  • Patent number: 6492585
    Abstract: A thermoelectric device operable at below ambient, ambient or high temperatures and a method of fabricating the same is provided. The thermoelectric device is made of first and second ceramic plates. An array of thermoelectric elements are coupled between the plates with metal filled glass. The metal filled glass is capable of attaching the thermoelectric elements to the plates, as well as electrically and thermally coupling the thermoelectric elements to the plates. The thermoelectric devices are fabricated by applying metal filled glass to a plate, positioning thermoelectric elements in the metal filled glass in an electrically serpentine manner and curing the metal filled glass to affix the plates and the thermoelectric elements together.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: December 10, 2002
    Assignee: Marlow Industries, Inc.
    Inventors: John M. Zamboni, Christopher S. Bettis
  • Patent number: 6399871
    Abstract: Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl2SnTe5, Tl2GeTe5, K2SnTe5 and Rb2SnTe5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (&kgr;g).
    Type: Grant
    Filed: December 29, 2000
    Date of Patent: June 4, 2002
    Assignee: Marlow Industries, Inc.
    Inventor: Jeffrey W. Sharp
  • Patent number: 6369314
    Abstract: The present invention allows optimum filling of void spaces typically found in skutterudite type crystal lattice structures associated with various semiconductor materials. Selective filling provides semiconductor materials which are particularly beneficial for use in fabricating thermoelectric devices for electrical power generation and/or cooling applications. By selectively filling a portion of the void spaces associated with skutterudite type crystal lattice structure, reductions in thermal conductivity of the resulting semiconducting material may be optimized while concurrently minimizing any reduction in electrical properties of the resulting semiconductor materials, thus maximizing the thermoelectric figure of merit for the associated thermoelectric device.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: April 9, 2002
    Assignee: Marlow Industries, Inc.
    Inventor: George S. Nolas
  • Patent number: 6207888
    Abstract: The present invention allows optimum filling of void spaces typically found in skutterudite type crystal lattice structures associated with various semiconductor materials. Selective filling of such void spaces in the associated lattice structure provides semiconductor materials which are particularly beneficial for use in fabricating thermoelectric devices for electrical power generation and/or cooling applications. By selectively filling a portion of the void spaces associated with skutterudite type crystal lattice structure, reductions in thermal conductivity of the resulting semiconducting material may be optimized while at the same time minimizing any reduction in electrical properties of the resulting semiconductor materials, which results in maximizing the thermoelectric figure of merit for the associated thermoelectric device.
    Type: Grant
    Filed: July 8, 1998
    Date of Patent: March 27, 2001
    Assignee: Marlow Industries, Inc.
    Inventor: George S. Nolas
  • Patent number: 6188011
    Abstract: The present invention allows optimum filling of cavities or cages typically found in crystal lattice type structures associated with an inclusion complex such as formed by clathrate compounds. Filling such cavities or cages in the associated crystal lattice type structure provides semiconductor materials which are particularly beneficial for use in fabricating thermoelectric devices for electrical power generation and/or cooling applications. By filling the cavities or cages associated with clathrate compounds with selected metal and/or semi-metal atoms, reductions in thermal conductivity may be optimized while at the same time minimizing any reduction in electrical properties of the resulting semiconductor materials. As a result, the thermoelectric Figure of Merit for a thermoelectric device fabricated from such clathrate compounds is maximized.
    Type: Grant
    Filed: January 18, 1999
    Date of Patent: February 13, 2001
    Assignee: Marlow Industries, Inc.
    Inventors: George S. Nolas, Glen A. Slack