Patents Assigned to Maskless Lithography, Inc.
  • Patent number: 8482732
    Abstract: A method and system for alignment of a tool to a workpiece in a continuous or discontinuous material flow are disclosed. The workpiece may be a portion of a web of material. An imaging system captures first and second images of the workpiece at first and second occasions respectively. Microscopic native features of the workpiece are selected, detected, tracked and/or compared in the first and second images. Based on the correspondence between, tracking or relative displacement of features as captured in the first and second images, an alignment to the workpiece is controlled. In embodiments, the workpiece and a tool, a projected image or a pattern to be imparted to the workpiece by a lithography or photolithography apparatus are aligned based upon positioning information determined from an analysis of correlated features or texture in the images. Positioning information may include a positioning error or a distortion indication.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: July 9, 2013
    Assignee: Maskless Lithography, Inc.
    Inventor: Hans Dohse
  • Patent number: 8284399
    Abstract: An alignment system for optical lithography uses cameras fixed to a movable stage and to a lithography unit to view unique microscopic non-uniformities that are inherent to the surface of a work piece, e.g., metal or ceramic microcrystalline grains, for position referencing. Stage cameras image two sites on the work piece through windows in the stage to establish original position templates. After the work piece has been repositioned, e.g., reversed topside-down, the same two sites are again viewed and template matching establishes the transformed coordinates of the work piece, e.g. by a lithography unit camera under which the stage moves to approximate site locations. Two corner cameras can serve as a coarse positioning mechanism. The alignment system is particular useful for backside alignment in printed circuit board lithography.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: October 9, 2012
    Assignee: Maskless Lithography, Inc.
    Inventor: Hans Dohse
  • Publication number: 20110157577
    Abstract: A method and system for alignment of a tool to a workpiece in a continuous or discontinuous material flow are disclosed. The workpiece may be a portion of a web of material. An imaging system captures first and second images of the workpiece at first and second occasions respectively. Microscopic native features of the workpiece are selected, detected, tracked and/or compared in the first and second images. Based on the correspondence between, tracking or relative displacement of features as captured in the first and second images, an alignment to the workpiece is controlled. In embodiments, the workpiece and a tool, a projected image or a pattern to be imparted to the workpiece by a lithography or photolithography apparatus are aligned based upon positioning information determined from an analysis of correlated features or texture in the images. Positioning information may include a positioning error or a distortion indication.
    Type: Application
    Filed: March 7, 2011
    Publication date: June 30, 2011
    Applicant: MASKLESS LITHOGRAPHY, INC.
    Inventor: Hans Dohse
  • Publication number: 20110075145
    Abstract: An alignment system for optical lithography uses cameras fixed to a movable stage and to a lithography unit to view unique microscopic non-uniformities that are inherent to the surface of a work piece, e.g., metal or ceramic microcrystalline grains, for position referencing. Stage cameras image two sites on the work piece through windows in the stage to establish original position templates. After the work piece has been repositioned, e.g., reversed topside-down, the same two sites are again viewed and template matching establishes the transformed coordinates of the work piece, e.g. by a lithography unit camera under which the stage moves to approximate site locations. Two corner cameras can serve as a coarse positioning mechanism. The alignment system is particular useful for backside alignment in printed circuit board lithography.
    Type: Application
    Filed: December 7, 2010
    Publication date: March 31, 2011
    Applicant: MASKLESS LITHOGRAPHY, INC.
    Inventor: Hans Dohse
  • Patent number: 7847938
    Abstract: An alignment system for optical lithography uses cameras fixed to a movable stage and to a lithography unit to view unique microscopic non-uniformities that are inherent to the surface of a work piece, e.g., metal or ceramic microcrystalline grains, for position referencing. Stage cameras image two sites on the work piece through windows in the stage to establish original position templates. After the work piece has been repositioned, e.g., reversed topside-down, the same two sites are again viewed and template matching establishes the transformed coordinates of the work piece, e.g. by a lithography unit camera under which the stage moves to approximate site locations. Two corner cameras can serve as a coarse positioning mechanism. The alignment system is particular useful for backside alignment in printed circuit board lithography.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: December 7, 2010
    Assignee: Maskless Lithography, Inc.
    Inventor: Hans Dohse
  • Patent number: 7719753
    Abstract: An optical lithography system comprises a light source, a spatial light modulator, imaging optics and means for continuously moving a photosensitive substrate relative to the spatial light modulator. The spatial light modulator comprises at least one array of individually switchable elements. The spatial light modulator is continuously illuminated and an image of the spatial light modulator is continuously projected on the substrate; consequently, the image is constantly moving across the surface of the substrate. While the image is moving across the surface, elements of the spatial light modulator are switched such that a pixel on the surface of the substrate receives, in serial, doses of energy from multiple elements of the spatial light modulator, thus forming a latent image on the substrate surface. The imaging optics is configured to project a blurred image of the spatial light modulator on the substrate, enabling sub-pixel resolution feature edge placement.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: May 18, 2010
    Assignee: Maskless Lithography, Inc.
    Inventor: William Daniel Meisburger
  • Patent number: 7639416
    Abstract: An optical lithography system comprises a light source, a spatial light modulator, imaging optics and means for continuously moving a photosensitive substrate relative to the spatial light modulator. The spatial light modulator comprises at least one array of individually switchable elements. The spatial light modulator is continuously illuminated and an image of the spatial light modulator is continuously projected on the substrate; consequently, the image is constantly moving across the surface of the substrate. While the image is moving across the surface, elements of the spatial light modulator are switched such that a pixel on the surface of the substrate receives, in serial, doses of energy from multiple elements of the spatial light modulator, thus forming a latent image on the substrate surface. The imaging optics is configured to project a blurred image of the spatial light modulator on the substrate, enabling sub-pixel resolution feature edge placement.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: December 29, 2009
    Assignee: Maskless Lithography, Inc.
    Inventor: William Daniel Meisburger
  • Publication number: 20090086207
    Abstract: An alignment system for optical lithography uses cameras fixed to a movable stage and to a lithography unit to view unique microscopic non-uniformities that are inherent to the surface of a work piece, e.g., metal or ceramic microcrystalline grains, for position referencing. Stage cameras image two sites on the work piece through windows in the stage to establish original position templates. After the work piece has been repositioned, e.g., reversed topside-down, the same two sites are again viewed and template matching establishes the transformed coordinates of the work piece, e.g. by a lithography unit camera under which the stage moves to approximate site locations. Two corner cameras can serve as a coarse positioning mechanism. The alignment system is particular useful for backside alignment in printed circuit board lithography.
    Type: Application
    Filed: September 29, 2008
    Publication date: April 2, 2009
    Applicant: MASKLESS LITHOGRAPHY, INC.
    Inventor: Hans Dohse
  • Publication number: 20090086307
    Abstract: An optical lithography system comprises a light source, a spatial light modulator, imaging optics and means for continuously moving a photosensitive substrate relative to the spatial light modulator. The spatial light modulator comprises at least one array of individually switchable elements. The spatial light modulator is continuously illuminated and an image of the spatial light modulator is continuously projected on the substrate; consequently, the image is constantly moving across the surface of the substrate. While the image is moving across the surface, elements of the spatial light modulator are switched such that a pixel on the surface of the substrate receives, in serial, doses of energy from multiple elements of the spatial light modulator, thus forming a latent image on the substrate surface. The imaging optics is configured to project a blurred image of the spatial light modulator on the substrate, enabling sub-pixel resolution feature edge placement.
    Type: Application
    Filed: October 24, 2007
    Publication date: April 2, 2009
    Applicant: Maskless Lithography, Inc.
    Inventor: William Daniel Meisburger
  • Publication number: 20090086182
    Abstract: An optical lithography system comprises a light source, a spatial light modulator, imaging optics and means for continuously moving a photosensitive substrate relative to the spatial light modulator. The spatial light modulator comprises at least one array of individually switchable elements. The spatial light modulator is continuously illuminated and an image of the spatial light modulator is continuously projected on the substrate; consequently, the image is constantly moving across the surface of the substrate. While the image is moving across the surface, elements of the spatial light modulator are switched such that a pixel on the surface of the substrate receives, in serial, doses of energy from multiple elements of the spatial light modulator, thus forming a latent image on the substrate surface. The imaging optics is configured to project a blurred image of the spatial light modulator on the substrate, enabling sub-pixel resolution feature edge placement.
    Type: Application
    Filed: October 24, 2007
    Publication date: April 2, 2009
    Applicant: Maskless Lithography, Inc.
    Inventor: William Daniel Meisburger
  • Publication number: 20090086176
    Abstract: An optical lithography system comprises a light source, a spatial light modulator, imaging optics and means for continuously moving a photosensitive substrate relative to the spatial light modulator. The spatial light modulator comprises at least one array of individually switchable elements. The spatial light modulator is continuously illuminated and an image of the spatial light modulator is continuously projected on the substrate; consequently, the image is constantly moving across the surface of the substrate. While the image is moving across the surface, elements of the spatial light modulator are switched such that a pixel on the surface of the substrate receives, in serial, doses of energy from multiple elements of the spatial light modulator, thus forming a latent image on the substrate surface. The imaging optics is configured to project a blurred image of the spatial light modulator on the substrate, enabling sub-pixel resolution feature edge placement.
    Type: Application
    Filed: October 24, 2007
    Publication date: April 2, 2009
    Applicant: Maskless Lithography, Inc.
    Inventor: William Daniel Meisburger
  • Patent number: 7508570
    Abstract: An optical lithography system comprises a light source, a spatial light modulator, imaging optics and means for continuously moving a photosensitive substrate relative to the spatial light modulator. The spatial light modulator comprises at least one array of individually switchable elements. The spatial light modulator is continuously illuminated and an image of the spatial light modulator is continuously projected on the substrate; consequently, the image is constantly moving across the surface of the substrate. While the image is moving across the surface, elements of the spatial light modulator are switched such that a pixel on the surface of the substrate receives, in serial, doses of energy from multiple elements of the spatial light modulator, thus forming a latent image on the substrate surface. The imaging optics is configured to project a blurred image of the spatial light modulator on the substrate, enabling sub-pixel resolution feature edge placement.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: March 24, 2009
    Assignee: Maskless Lithography, Inc.
    Inventor: William Daniel Meisburger
  • Patent number: 7295362
    Abstract: An optical lithography system comprises a light source, a spatial light modulator, imaging optics and means for continuously moving a photosensitive substrate relative to the spatial light modulator. The spatial light modulator comprises at least one array of individually switchable elements. The spatial light modulator is continuously illuminated and an image of the spatial light modulator is continuously projected on the substrate; consequently, the image is constantly moving across the surface of the substrate. While the image is moving across the surface, elements of the spatial light modulator are switched such that a pixel on the surface of the substrate receives, in serial, doses of energy from multiple elements of the spatial light modulator, thus forming a latent image on the substrate surface. The imaging optics is configured to project a blurred image of the spatial light modulator on the substrate, enabling sub-pixel resolution feature edge placement.
    Type: Grant
    Filed: September 14, 2004
    Date of Patent: November 13, 2007
    Assignee: Maskless Lithography, Inc.
    Inventor: William Daniel Meisburger
  • Patent number: 7167296
    Abstract: An optical lithography system comprises a light source, a spatial light modulator, imaging optics and means for continuously moving a photosensitive substrate relative to the spatial light modulator. The spatial light modulator comprises at least one array of individually switchable elements. The spatial light modulator is continuously illuminated and an image of the spatial light modulator is continuously projected on the substrate; consequently, the image is constantly moving across the surface of the substrate. While the image is moving across the surface, elements of the spatial light modulator are switched such that a pixel on the surface of the substrate receives, in serial, doses of energy from multiple elements of the spatial light modulator, thus forming a latent image on the substrate surface. The imaging optics is configured to project a blurred image of the spatial light modulator on the substrate, enabling sub-pixel resolution feature edge placement.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: January 23, 2007
    Assignee: Maskless Lithography, Inc.
    Inventor: William Daniel Meisburger