Patents Assigned to Massachusetts Institute of Technology
  • Publication number: 20240141324
    Abstract: The present disclosure, at least in part, provides RNA cleavage based engineered bi-stable toggle switch utilizing the Programmable Endonucleolytic Scission-Induced Stability Tuning (PERSIST) platform. Also provided herein, are vectors encoding the engineered bi-stable toggle switch, and uses thereof.
    Type: Application
    Filed: May 1, 2023
    Publication date: May 2, 2024
    Applicant: Massachusetts Institute of Technology
    Inventors: Ron Weiss, Breanna E. DiAndreth, Noreen Wauford
  • Publication number: 20240141134
    Abstract: Compositions, articles, and methods related to hydrogen gas sensors are generally described.
    Type: Application
    Filed: October 18, 2023
    Publication date: May 2, 2024
    Applicant: Massachusetts Institute of Technology
    Inventors: Timothy Manning Swager, Lennon Shaoxiong Luo
  • Publication number: 20240141309
    Abstract: Engineered Streptococcus canis Cas9 (ScCas9) variants include an ScCas9 protein with its PID being the PID amino acid composition of Streptococcus pyogenes Cas9 (SpCas9-NG, an ScCas9 protein having a threonine-to-lysine substitution mutation at position 1227 in its amino acid sequence (Sc+), and an ScCas9 protein having a threonine-to-lysine substitution mutation at position 1227 and a substitution of residues ADKKLRKRSGKLATE [SEQ ID No. 4] in position 365-379 in the ScCas9 open reading frame (Sc++). Also included are CRISPR-associated DNA endonucleases with a PAM specificity of 5?-NG-3? or 5?-NNG-3? and a method of altering expression of a gene product by utilizing the engineered ScCas9 variants.
    Type: Application
    Filed: July 11, 2023
    Publication date: May 2, 2024
    Applicant: Massachusetts Institute of Technology
    Inventors: Pranam Chatterjee, Noah Michael Jakimo, Joseph M. Jacobson
  • Publication number: 20240139675
    Abstract: Methods, apparatuses, and systems related to electrochemical capture of Lewis acid gases from fluid mixtures are generally described. Certain embodiments are related to electrochemical methods involving selectively removing a first Lewis acid gas from a fluid mixture containing multiple types of Lewis acid gases (e.g., a first Lewis acid gas and a second Lewis acid gas). Certain embodiments are related to electrochemical systems comprising certain types of electroactive species having certain redox states in which the species is capable of binding a first Lewis acid gas but for which binding with a second Lewis acid gas is thermodynamically and/or kinetically unfavorable. The methods, apparatuses, and systems described herein may be useful in carbon capture and pollution mitigation applications.
    Type: Application
    Filed: November 9, 2023
    Publication date: May 2, 2024
    Applicant: Massachusetts Institute of Technology
    Inventors: Sahag Voskian, Trevor Alan Hatton, Cameron G. Halliday
  • Patent number: 11971417
    Abstract: The present description provides methods, assays and reagents useful for sequencing proteins. Sequencing proteins in a broad sense involves observing the plausible identity and order of amino acids, which is useful for sequencing single polypeptide molecules or multiple molecules of a single polypeptide. In one aspect, the methods are useful for sequencing multiple polypeptides. The methods and reagents described herein can be useful for high resolution interrogation of the proteome and enabling ultrasensitive diagnostics critical for early detection of diseases.
    Type: Grant
    Filed: October 12, 2022
    Date of Patent: April 30, 2024
    Assignee: Massachusetts Institute of Technology
    Inventors: Daniel Masao Estandian, Alexi Georges Choueiri, Edward Stuart Boyden, Asmamaw Wassie
  • Patent number: 11973306
    Abstract: Disclosed is a laser system including a first laser and a second laser. The first laser includes a laser cavity, and a gas phase molecular gain medium disposed in the laser cavity, the gain medium having an absorption band. The second laser is a solid state laser configured to be continuously tunable, with respect to an emission wavelength of the second laser, over the absorption band of the gain medium, and the second laser is tuned to pump rotational vibrational transitions in the gain medium to achieve a rotational population inversion.
    Type: Grant
    Filed: November 12, 2020
    Date of Patent: April 30, 2024
    Assignees: PRESIDENT AND FELLOWS OF HARVARD COLLEGE, Massachusetts Institute of Technology, The United States of America as Represented by the Secretary of the Army
    Inventors: Paul Chevalier, Arman Amirzhan, Marco Piccardo, Fan Wang, Steven Glen Johnson, Henry O. Everitt, Federico Capasso
  • Patent number: 11971606
    Abstract: A ruggedized adjustable mounting system is described for adjustably coupling and selectively locking a component supported in a fixture of the mount in a desired orientation. In some embodiments, the mounting system includes one or more kinematic couplings that support a fixture on a base and one or more adjustable couplings that are configured to adjust a separation distance between two opposing portions of the fixture and the base to selectively pivot the fixture about one or more axes of rotation.
    Type: Grant
    Filed: November 19, 2020
    Date of Patent: April 30, 2024
    Assignee: Massachusetts Institute of Technology
    Inventors: Andrew Guzman, Joseph Flaherty, Steven R. Gillmer, Kevin Edward Sullivan, Steven Augst
  • Patent number: 11970542
    Abstract: The present disclosure provides compositions and methods for improved pre-targeted radioimmunotherapeutics (PRIT) to treat various hematological disorders, such as B cell hyperproliferative disorders and solid tumors. The disclosed compositions include bispecific antibody compositions having a first domain that specifically bind to an antigen such as CD38, BCMA, Muc1, GPRC5D, or Slam7, and a second domain that specifically binds to a radioactive ligand. Methods include administering the disclosed bispecific antibody reagent and separately administering the radioactive ligand. In some embodiments, a clearing agent is also administered. In some embodiments, the therapeutic methods comprise administering a combination of two or more bispecific antibody reagents. In some embodiments, an enhancing agent, such as ATRA, gamma secretase inhibitor, or dextramethasone, is also administered to enhance expression of the target antigen on the target cells.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: April 30, 2024
    Assignees: Fred Hutchinson Cancer Center, Massachusetts Institute of Technology
    Inventors: Damian J. Green, Yukang Lin, Oliver W. Press, Alice Tzeng, Karl Dane Wittrup
  • Patent number: 11972843
    Abstract: Systems and methods are disclosed herein for quantitatively identifying a patient's sedation level and predicting adverse events, based on one or more capnograms or outputs from a pharmacokinetic, pharmacodynamic, or ventilatory model. A sensor measures a carbon dioxide concentration of air exhaled by a patient into a breath receiver. A processor processes the sensor data to generate a capnogram including one or more respiratory cycles, computes the outputs of pharmacokinetic, pharmacodynamic, or ventilatory models, and extracts one or more of the resulting features from the capnogram and pharmacokinetic, pharmacodynamic, or ventilatory model outputs. A multi-parameter metric is computed based on the one or more extracted features and estimates the current or predicted sedation level of the patient.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: April 30, 2024
    Assignees: Massachusetts Institute of Technology, Children's Medical Center Corporation
    Inventors: George Cheeran Verghese, Margaret Gan Guo, Rebecca Mieloszyk, Thomas Heldt, Baruch Shlomo Krauss
  • Publication number: 20240135224
    Abstract: Quantum sensors provide excellent performance combining high sensitivity with spatial resolution. Unfortunately, they can only detect signal fields at frequencies in a few accessible ranges, typically low frequencies up to the experimentally achievable control field amplitudes and a narrow window around their resonance frequencies. Fortunately, arbitrary-frequency signals can be detected by using the sensor qubit as a quantum frequency mixer, enabling a variety of sensing applications. The technique leverages nonlinear effects in periodically driven (Floquet) quantum systems to achieve quantum frequency mixing of the signal and an applied AC bias field. The frequency-mixed field can be detected using Rabi and CPMG sensing techniques with the bias field. Frequency mixing can distinguish vectorial components of an oscillating signal field, thus enabling arbitrary-frequency vector magnetometry.
    Type: Application
    Filed: March 31, 2023
    Publication date: April 25, 2024
    Applicant: Massachusetts Institute of Technology
    Inventors: Guoqing WANG, Yixiang LUI, Jennifer SCHLOSS, Scott ALSID, Danielle A. BRAJE, Paola CAPPELLARO
  • Publication number: 20240133054
    Abstract: Chemical reaction devices involving acid and/or base, and related systems and methods, are generally described.
    Type: Application
    Filed: December 22, 2023
    Publication date: April 25, 2024
    Applicant: Massachusetts Institute of Technology
    Inventors: Yet-Ming Chiang, Leah Ellis, Andres Badel, Isaac W. Metcalt
  • Publication number: 20240132400
    Abstract: Reaction schemes involving acids and bases; reactors comprising spatially varying chemical composition gradients (e.g., spatially varying pH gradients), and associated systems and methods, are generally described.
    Type: Application
    Filed: December 22, 2023
    Publication date: April 25, 2024
    Applicant: Massachusetts Institute of Technology
    Inventors: Yet-Ming Chiang, Leah Ellis, Andres Badel
  • Publication number: 20240132381
    Abstract: Electrochemical removal of chemical products in seawater, or other aqueous environments, resulting from increased atmospheric carbon dioxide levels is described.
    Type: Application
    Filed: February 17, 2022
    Publication date: April 25, 2024
    Applicant: Massachusetts Institute of Technology
    Inventors: Trevor Alan Hatton, Kripa K. Varanasi, John Lake, Seoni Kim
  • Publication number: 20240136126
    Abstract: Systems and methods involving nanomaterial-based electrodes, such as supercapacitor and battery electrodes that can be flexible, are described.
    Type: Application
    Filed: October 24, 2023
    Publication date: April 25, 2024
    Applicants: Massachusetts Institute of Technology, Analog Devices, Inc.
    Inventors: Karen K. Gleason, Brian L. Wardle, Estelle Cohen, Yue Zhou, Xiaoxue Wang, Yosef Stein
  • Publication number: 20240136608
    Abstract: The systems and methods for monitoring and/or regulating thermal parameters in convective flow batteries is generally described.
    Type: Application
    Filed: October 6, 2023
    Publication date: April 25, 2024
    Applicant: Massachusetts Institute of Technology
    Inventors: Fikile Richard Brushett, Weiran Gao, Javit Drake
  • Patent number: 11964022
    Abstract: The present disclosure provides compounds having the general formula P-L-U, or pharmaceutically acceptable salts thereof, wherein P is a FOXO1 fusion protein binding moiety, L is a bivalent linker, and U is an ubiquitin ligase binding moiety. Also provided are pharmaceutical compositions containing such compounds and methods of using such compounds.
    Type: Grant
    Filed: September 16, 2022
    Date of Patent: April 23, 2024
    Assignees: Massachusetts Institute of Technology, Universität Zürich
    Inventors: Angela Nicole Koehler, Shelby Doyle, Becky Leifer, Madeleine Henley, Beat W. Schaefer, Marco Wachtel
  • Patent number: 11964007
    Abstract: Compositions and methods are described for inducing an immune response against an immunogen in humans. The induced immune response is obtained by administering a heterologous prime-boost combination of an in vitro transcribed (IVT) self-replicating RNA (repRNA) and an adenovirus vector. The compositions and methods can be used to provide a protective immunity against a disease, such as a viral infection or a cancer, in humans.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: April 23, 2024
    Assignees: Janssen Vaccines & Prevention B.V., Massachusetts Institute of Technology
    Inventors: Ronald Vogels, Marijn Van Der Neut Kolfschoten, Darrell J. Irvine, Ron Weiss, Ely Blanton Porter, Mariane Bandeira Melo, Tasuku Kitada
  • Patent number: 11964026
    Abstract: Disclosed are particles for delivering cytokinese, such as IL-12, for the treatment of cancer. The particles comprise cytokines non-covalently bound to liposomes, where the liposomes are coated with polyelectrolytes.
    Type: Grant
    Filed: August 22, 2022
    Date of Patent: April 23, 2024
    Assignee: Massachusetts Institute of Technology
    Inventors: Antonio Eric Barberio, Santiago Correa Echavarria, Mariane Bandeira Melo, Talar Tokatlian, Erik Christopher Dreaden, Paula T. Hammond, Darrell J. Irvine
  • Patent number: 11963787
    Abstract: This disclosure provides a method for imaging lymph nodes and lymphatic vessels without a contrast agent. The method includes providing, using an optical source, an infrared illumination to a region of a subject having at least one lymphatic component, detecting a reflected portion of the infrared illumination directly reflected from the region using a sensor positioned thereabout, and generating at least one image indicative of the at least one lymphatic component in the subject using the reflected portion of the infrared illumination.
    Type: Grant
    Filed: January 12, 2023
    Date of Patent: April 23, 2024
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Zhongming Li, Angela Belcher
  • Patent number: 11965849
    Abstract: A sensor can include one or more of a semiconducting material, an oxidation catalyst, and an oxidation enhancer, the sensor being configured to detect an analyte, such as methane, a thiol, or both.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: April 23, 2024
    Assignee: Massachusetts Institute of Technology
    Inventors: Timothy Swager, Mate Bezdek, Richard Liu