Patents Assigned to Medinol Ltd.
  • Publication number: 20110297735
    Abstract: A stent manufacturing assembly for assisting in the manufacturing of a medical stent and a process for manufacturing a medical stent are disclosed. A patterned sheet of metal can be wrapped around the manufacturing assembly's outer surface. The assembly includes a mandrel and a sleeve. The mandrel includes a rigid and substantially cylindrical external surface, and the sleeve surrounds the mandrel and has a variable inner diameter. The sleeve adheres to the inner surface of the stent formed around the sleeve to allow the sleeve to remain in place. After the mandrel is slidably removed from the sleeve, the sleeve radially collapses and contracts, thereby causing minimal shear stress on the stent's inner surface and preventing or minimizing friction and pressure between the mandrel and the stent.
    Type: Application
    Filed: June 2, 2010
    Publication date: December 8, 2011
    Applicant: MEDINOL, LTD.
    Inventors: Eran KAPLAN, Oded STEIN
  • Patent number: 8052733
    Abstract: Embodiments of a stent system include a catheter is made with only one lumen leading to a balloon. An arrangement is provided to easily lock a short wire in place at the distal end of the balloon. Multiple wires of different properties can be included in a package containing the stent and the delivery catheter, such that the physician will be able to choose the right wire tip according to the lesion and vessel treated and attach it at the distal tip of the balloon before beginning the stenting procedure.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: November 8, 2011
    Assignee: Medinol Ltd.
    Inventor: Jacob Richter
  • Publication number: 20110238152
    Abstract: The present invention provides a method of fabricating a drug delivery stent. In one embodiment, the method involves forming a stent pattern in a flat sheet, where the stent pattern includes reservoirs, generating a flat map of the reservoirs, filling the reservoirs with a composition based on the flat map, and then forming the filled stent pattern into a tubular shape and joining the sides. In another embodiment, the method involves forming a stent pattern in a flat sheet, generating a flat map of discrete portions of the stent pattern that are desirable locations for coating, coating the discrete portions with a composition based on the flat map, and then forming the coated stent pattern into a tubular shape and joining the sides.
    Type: Application
    Filed: May 6, 2011
    Publication date: September 29, 2011
    Applicant: MEDINOL LTD.
    Inventor: Jacob Richter
  • Patent number: 7998193
    Abstract: An intravascular stent especially suited for implanting in curved arterial portions or ostial regions. The stent can include an end region which is fabricated to have a greater radial strength than the remaining axial length of the stent. Such a stent is particularly suited for use in ostial regions, which require greater support near the end of the stent. The stent alternatively can include sections adjacent the end of the stent with greater bending flexibility than the remaining axial length of the stent. Such a stent is particularly suited for use in curved arteries. The stent can also be constructed with an end that has greater radial strength and sections adjacent the end with greater bending flexibility. Such a stent prevents flaring of the stent end during insertion.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: August 16, 2011
    Assignee: Medinol Ltd.
    Inventor: Jacob Richter
  • Publication number: 20110196315
    Abstract: A catheter tip that provides longitudinal flexibility, pushability and radial rigidity thereby improving deliverability is provided. The catheter tip includes a spring-like element to provide longitudinal flexibility and pushability to the catheter tip. The spring-like element may also provide radial support to the distal edge of the catheter tip. Alternatively, a radially rigid distal end may also be included distal of the spring-like element. The apparatus may be used with any interventional catheter system, but is particularly suitable for use with balloon-expandable stent systems and balloon-angioplasty systems, where flexibility of the catheter tip and minimal flaring of the distal edge of the catheter tip is desirable.
    Type: Application
    Filed: February 8, 2011
    Publication date: August 11, 2011
    Applicant: MEDINOL LTD.
    Inventor: Shlomit CHAPPEL
  • Patent number: 7976576
    Abstract: An intravascular stent especially suited for implanting in curved arterial portions or ostial regions. The stent can include an end region which is fabricated to have a greater radial strength than the remaining axial length of the stent. Such a stent is particularly suited for use in ostial regions, which require greater support near the end of the stent. The stent alternatively can include sections adjacent the end of the stent with greater bending flexibility than the remaining axial length of the stent. Such a stent is particularly suited for use in curved arteries. The stent can also be constructed with an end that has greater radial strength and sections adjacent the end with greater bending flexibility. Such a stent prevents flaring of the stent end during insertion.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: July 12, 2011
    Assignee: Medinol Ltd.
    Inventor: Jacob Richter
  • Patent number: 7959664
    Abstract: A drug-coated stent and a method for fabricating the stent are disclosed. The stent has an originally flat pattern and connection points where the sides of the flat pattern are joined. The method includes the steps of a) cutting a stent pattern into a flat piece of metal thereby to produce a metal pattern, b) spraying the flat metal stent pattern with a polymer and a drug, c) deforming the metal pattern so as to cause two opposing sides to meet, and d) joining the two opposing sides at least at one point. Substantially no portion of the stent projects into the lumen of the stent when the stent is expanded against the internal wall of a blood vessel.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: June 14, 2011
    Assignee: Medinol, Ltd.
    Inventor: Jacob Richter
  • Publication number: 20110033098
    Abstract: A method and system for generating stabilized intravascular ultrasonic images are provided. The system may include a probe instrument, such as a catheter, connected to a processor and a post-processor. The method of using the system to stabilize images and the method for stabilizing images involve the process by which the processor and post-processor stabilize the image. A computer readable medium containing executable instructions for controlling a computer containing the processor and post-processor to perform the method of stabilizing images is also provided. The probe instrument, which has a transmitter for transmitting ultrasonic signals and a receiver for receiving reflected ultrasonic signals that contain information about a tubular environment, such as a body lumen, preferably is a catheter.
    Type: Application
    Filed: August 6, 2010
    Publication date: February 10, 2011
    Applicant: MEDINOL LTD.
    Inventors: Jacob RICHTER, Oleg WEIZMAN, Roee SHIBOLET
  • Publication number: 20110022156
    Abstract: An intravascular stent especially suited for implanting in curved arterial portions. The stent retains longitudinal flexibility after expansion. The stent is formed of intertwined meander patterns forming triangular cells. The triangular cells are adapted to provide radial support, and also to provide longitudinal flexibility after expansion. The triangular cells provide increased coverage of a vessel wall. The stent can have different portions adapted to optimize radial support or to optimize longitudinal flexibility. Loops in the stent are disposed and adapted to cooperate so that after expansion of said stent within a curved lumen, the stent is curved and cells on the outside of the curve open in length, but narrow in width whereas cells on the inside of the curve shorten in length but thicken in width to maintain a density of stent element area which much more constant than otherwise between the inside and the outside of the curve.
    Type: Application
    Filed: October 5, 2010
    Publication date: January 27, 2011
    Applicant: MEDINOL LTD.
    Inventors: Jacob RICHTER, Gregory PINCHASIK
  • Patent number: 7875071
    Abstract: A system and method for delivering and assembling a bifurcated stent in a bifurcated vessel having a first lumen and a second lumen. The system and method includes the use of three balloon catheters wherein at least one of the catheters is a fixed wire catheter. A first segment of the bifurcated stent having a stem portion, a first leg portion, a longitudinal bore extending therethrough and a branch aperture formed in the side wall is mounted on two of the balloon catheters and delivered to the treatment site where it is implanted into the first lumen. A second segment of the bifurcated stent having a proximal end, a distal end and a longitudinal bore extending therethrough is mounted on the third balloon catheter and is delivered to the treatment site such that the distal end extends into the second lumen and the proximal end extends into longitudinal bore of the first segment.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: January 25, 2011
    Assignee: Medinol, Ltd.
    Inventor: Jacob Richter
  • Patent number: 7828835
    Abstract: An intravascular stent especially suited for implanting in curved arterial portions. The stent retains longitudinal flexibility after expansion. The stent is formed of intertwined meander patterns forming triangular cells. The triangular cells are adapted to provide radial support, and also to provide longitudinal flexibility after expansion. The triangular cells provide increased coverage of a vessel wall. The stent can have different portions adapted to optimize radial support or to optimize longitudinal flexibility. Loops in the stent are disposed and adapted to cooperate so that after expansion of said stent within a curved lumen, the stent is curved and cells on the outside of the curve open in length, but narrow in width whereas cells on the inside of the curve shorten in length but thicken in width to maintain a density of stent element area which much more constant than otherwise between the inside and the outside of the curve.
    Type: Grant
    Filed: May 25, 2001
    Date of Patent: November 9, 2010
    Assignee: Medinol Ltd.
    Inventors: Jacob Richter, Gregory Pinchasik
  • Publication number: 20100280593
    Abstract: An intravascular stent especially suited for implanting in curved arterial portions or ostial regions. The stent can include an end region which is fabricated to have a greater radial strength than the remaining axial length of the stent. Such a stent is particularly suited for use in ostial regions, which require greater support near the end of the stent. The stent alternatively can include sections adjacent the end of the stent with greater bending flexibility than the remaining axial length of the stent. Such a stent is particularly suited for use in curved arteries. The stent can also be constructed with an end that has greater radial strength and sections adjacent the end with greater bending flexibility. Such a stent prevents flaring of the stent end during insertion.
    Type: Application
    Filed: May 10, 2010
    Publication date: November 4, 2010
    Applicant: MEDINOL, LTD.
    Inventor: Jacob RICHTER
  • Publication number: 20100274350
    Abstract: An expandable helical stent is provided, wherein the stent may be formed of a main stent component and a securement. The main stent component is formed from a flat strip having one or more undulating side bands that may be connected to form geometrically shaped cells and are helically wound to form a stent. The helical coils of the main stent component may be spaced apart or nestled to each other. The nestling of the undulation of adjacent helical windings contributes to maintaining the tubular shape and uniformity of the helically coiled stent. Alternatively, the flat strip may comprise a single undulating pattern. At the ends of the main stent component are end bands, which when wound, form a cylindrical ring. In one embodiment, one or more struts of the main stent component may have a width sufficient to include one or more fenestrations. The fenestrated struts may be connected by loops or turns wherein the material is narrower than that of the fenestrated struts to provide enhanced flexibility.
    Type: Application
    Filed: April 21, 2010
    Publication date: October 28, 2010
    Applicant: MEDINOL LTD.
    Inventor: Jacob RICHTER
  • Publication number: 20100228339
    Abstract: An intravascular stent especially suited for implanting in curved arterial portion. The stent retains longitudinal flexibility after expansion. The stent is formed of intertwined meander patterns forming triangular cells. The cells are adapted to provide radial support, and also provide longitudinal flexibility after expansion. The cells also provide increase coverage of a vessel wall. Loops in the stent are disposed and adapted to cooperate, so that after expansion of said stent within a curved lumen, the stent is curved and cells on the outside of the curve open in length, but narrow in width, whereas cells on the inside of the curve shorten in length, but thicken in width to maintain a density of the stent element area which is much more constant than otherwise between the inside and outside of the curve. The stent also minimizes flaring out by eliminating free loops of the radially supporting circumferential bands of loops.
    Type: Application
    Filed: May 10, 2010
    Publication date: September 9, 2010
    Applicant: MEDINOL, LTD.
    Inventor: Jacob RICHTER
  • Patent number: 7763064
    Abstract: Disclosed is a stent having struts with reverse direction curvature for providing a reduced compressed profile and an increased expanded profile. The strut configuration comprises a plurality of arcuate sections facing in opposite convex and a concave orientation. The strut width may be gradually decreased from its ends towards the strut's mid-section to redistribute maximal strains away from portions of the stent more susceptible to permanent deformation, such as the loop portions. Varying strut lengths to offset the maximum circumferential widths of adjacent portions of the stent may further reduce the compressed stent profile. The varied stent lengths may also contribute to an increased expanded stent profile. Stents with the reverse direction curvature strut design can obtain an expanded to compressed stent diameter ratio of about 7:1 compared to conventional stents that have a ratio of up to about 5:1. The curved strut can be utilized with any stent design.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: July 27, 2010
    Assignee: Medinol, Ltd.
    Inventor: Gregory Pinchasik
  • Patent number: 7758627
    Abstract: An intravascular stent especially suited for implanting in curved arterial portion. The stent retains longitudinal flexibility after expansion. The stent is formed of intertwined meander patterns forming triangular cells. The cells are adapted to provide radial support, and also provide longitudinal flexibility after expansion. The cells also provide increase coverage of a vessel wall. Loops in the stent are disposed and adapted to cooperate, so that after expansion of said stent within a curved lumen, the stent is curved and cells on the outside of the curve open in length, but narrow in width, whereas cells on the inside of the curve shorten in length, but thicken in width to maintain a density of the stent element area which is much more constant than otherwise between the inside and outside of the curve. The stent also minimizes flaring out by eliminating free loops of the radially supporting circumferential bands of loops.
    Type: Grant
    Filed: January 14, 2004
    Date of Patent: July 20, 2010
    Assignee: Medinol, Ltd.
    Inventor: Jacob Richter
  • Patent number: 7722658
    Abstract: An intravascular stent especially suited for implanting in curved arterial portions. The stent retains longitudinal flexibility after expansion. The stent is formed of intertwined meander patterns forming triangular cells. The triangular cells are adapted to provide radial support, and also to provide longitudinal flexibility after expansion. The triangular cells provide increased coverage of a vessel wall. The stent can have different portions adapted to optimize radial support or to optimize longitudinal flexibility. The stent can be adapted to prevent flaring of portions of the stent during insertion.
    Type: Grant
    Filed: July 14, 2003
    Date of Patent: May 25, 2010
    Assignee: Medinol Ltd.
    Inventors: Jacob Richter, Gregory Pinchasik
  • Publication number: 20100100166
    Abstract: An intravascular stent especially suited for implanting in curved arterial portions. The stent retains longitudinal flexibility after expansion. The stent is formed of intertwined meander patterns forming triangular cells. The triangular cells are adapted to provide radial support, and also to provide longitudinal flexibility after expansion. The triangular cells provide increased coverage of a vessel wall. The stent can have different portions adapted to optimize radial support or to optimize longitudinal flexibility. Loops in the stent are disposed and adapted to cooperate so that after expansion of said stent within a curved lumen, the stent is curved and cells on the outside of the curve open in length, but narrow in width whereas cells on the inside of the curve shorten in length but thicken in width to maintain a density of stent element area which much more constant than otherwise between the inside and the outside of the curve.
    Type: Application
    Filed: December 22, 2009
    Publication date: April 22, 2010
    Applicant: MEDINOL, LTD.
    Inventors: Jacob RICHTER, Gregory PINCHASIK
  • Publication number: 20100076540
    Abstract: A system and method for delivering and assembling a bifurcated stent in a bifurcated vessel having a first lumen and a second lumen. The system and method includes the use of three balloon catheters wherein at least one of the catheters is a fixed wire catheter. A first segment of the bifurcated stent having a stem portion, a first leg portion, a longitudinal bore extending therethrough and a branch aperture formed in the side wall is mounted on two of the balloon catheters and delivered to the treatment site where it is implanted into the first lumen. A second segment of the bifurcated stent having a proximal end, a distal end and a longitudinal bore extending therethrough is mounted on the third balloon catheter and is delivered to the treatment site such that the distal end extends into the second lumen and the proximal end extends into longitudinal bore of the first segment.
    Type: Application
    Filed: September 28, 2009
    Publication date: March 25, 2010
    Applicant: MEDINOL, LTD.
    Inventor: Jacob RICHTER
  • Publication number: 20100042200
    Abstract: A method and an apparatus to create a more favorable flow regime in a lumen. An artificial shape in the lumen is created to at least one of eliminate flow disturbances and enhance aspects of fluid flow through a treatment site.
    Type: Application
    Filed: August 14, 2009
    Publication date: February 18, 2010
    Applicant: MEDINOL, LTD.
    Inventors: Yoram RICHTER, Elazer R. EDELMAN