Patents Assigned to Medtronic, Inc.
  • Patent number: 11975206
    Abstract: An implantable medical device (IMD) comprises a plurality of deep tines configured to be advanced into a septum of a heart of a patient in different directions that are not parallel to a longitudinal axis of the implantable medical device, wherein each deep tine of the plurality of deep tines is configured to deliver cardiac pacing to cardiac tissue distal to a chamber of the heart in which the IMD is implanted, and one or more shallow electrodes engageable with the septum, wherein the one or more shallow electrodes are configured to deliver cardiac pacing to the chamber of the heart in which the IMD is implanted.
    Type: Grant
    Filed: March 3, 2021
    Date of Patent: May 7, 2024
    Assignee: Medtronic, Inc.
    Inventors: Kaileigh E. Rock, Michael D. Eggen, Jean M. Carver, Duane N. Mateychuk, Zhongping C. Yang, Douglas S. Hine, Scott J. Brabec, Vania Lee
  • Patent number: 11975200
    Abstract: Devices, systems, and techniques are disclosed for managing electrical stimulation therapy and/or sensing of physiological signals such as brain signals. For example, a system is configured to receive, for each electrode combination of a plurality of electrode combinations, information representing a signal sensed in response to first electrical stimulation delivered to a patient via a lead, wherein the plurality of electrode combinations comprise different electrode combinations comprising electrode disposed at different positions around a perimeter of the lead implanted in the patient. The system may also be configured to determine, based on the information for each electrode combination of the plurality of electrode combinations, values for a threshold at different locations around the perimeter of the lead and determine, based on the values for the threshold, one or more stimulation parameter values that at least partially define second electrical stimulation deliverable to the patient via the lead.
    Type: Grant
    Filed: February 17, 2022
    Date of Patent: May 7, 2024
    Assignee: Medtronic, Inc.
    Inventors: Jadin C. Jackson, Rene A. Molina, Christopher L. Pulliam
  • Patent number: 11975204
    Abstract: In some examples, a system can be used for delivering cardiac resynchronization therapy (CRT). The system may include a pacing device configured to be implanted within a patient. The pacing device can include a plurality of electrodes, signal generation circuitry configured to deliver ventricular pacing via the plurality of electrodes, and a sensor configured to produce a signal that indicates mechanical activity of the heart. Processing circuitry can be configured to identify one or more features of a cardiac contraction within the signal, and determine whether the contraction was a fusion beat based on the one or more features.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: May 7, 2024
    Assignee: Medtronic, Inc.
    Inventors: Robert W. Stadler, Richard Cornelussen, Berthold Stegemann
  • Patent number: 11975187
    Abstract: Techniques are disclosed for delivering electrical stimulation therapy to a patient. In one example, a medical system delivers electrical stimulation therapy to a tissue of the patient via electrodes. The medical system determines a first change of a first sensed signal of the patient to movement by the patient and a second change of a second sensed signal of the patient to the movement by the patient. Based on the first change and the second change, the medical system selects one of the first sensed signal and the second sensed signal of the patient for controlling the electrical stimulation therapy. The medical system adjusts a level of at least one parameter of the electrical stimulation therapy based on the selected one of the first sensed signal and the second sensed signal.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: May 7, 2024
    Assignee: Medtronic, Inc.
    Inventors: Scott R. Stanslaski, Timothy R. Abraham, Thomas Adamski, Timothy J. Denison, Robert S. Raike
  • Patent number: 11969233
    Abstract: A method for monitoring a cardiovascular pressure in a patient includes measuring, by pressure sensing circuitry of an implantable pressure sensing device, the cardiovascular pressure of the patient. The method further includes transmitting, via wireless communication circuitry of the implantable pressure sensing device, the measured cardiovascular pressure to another device. The method further includes determining, by processing circuitry of the other device, whether a posture of the patient at a time of the measured cardiovascular pressure was a target posture for cardiovascular pressure measurements. The method further includes determining, by the processing circuitry of the other device, whether to store or discard the transmitted cardiovascular pressure based on determining whether the posture was the target posture.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: April 30, 2024
    Assignee: Medtronic, Inc.
    Inventors: Mary M. Morris, Ruth N. Klepfer, Karen J. Kleckner, Joel R. Lauer
  • Patent number: 11969592
    Abstract: An implantable medical device (IMD) includes a memory configured to store a set of therapy parameters for subsensory electrical stimulation of a patient; and therapy delivery circuitry configured to deliver the subsensory electrical stimulation to at least one of a sacral nerve or tibial nerve based on the stored set of therapy parameters to provide immediate therapeutic effect caused by the ongoing delivery of the subsensory electrical stimulation to address incontinence, wherein a stimulation intensity of the subsensory electrical stimulation is less than 80% of a stimulation intensity at a sensory threshold, and wherein the patient does not perceive delivery of the subsensory electrical stimulation and perceives delivery of stimulation at the sensory threshold.
    Type: Grant
    Filed: March 30, 2023
    Date of Patent: April 30, 2024
    Assignee: Medtronic, Inc.
    Inventors: Lance Zirpel, Sudha B. Iyer, Xuan K. Wei
  • Patent number: 11969300
    Abstract: An implantable medical lead may include an electrode at a distal portion of the lead that is configured to monitor or provide therapy to a target site. The lead may include a visible indicator that is visible to the naked eye of a clinician at a medial portion of the lead that is configured to indicate when the electrodes of the lead are longitudinally and radially aligned properly to monitor or treat the target site. A clinician may insert the lead into the patient using an introducer sheath inserted to a predetermined depth into the patient and subsequently aligning the distal portion of the lead by orienting the indicator at an entry port of the introducer sheath.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: April 30, 2024
    Assignee: Medtronic, Inc.
    Inventors: George W. McFall, Thomas D. Brostrom, Mark T. Marshall, Dina L. Williams, Megan Harris, Keith D. Anderson, Maggie J. Pistella
  • Patent number: 11969821
    Abstract: A system includes an energy source, a focusing system, and a controller. The energy source is configured to output energy pulses to the focusing system. A chamber surrounds at least a portion of a metallic substrate and contain a liquid in contact with a surface of the metallic substrate. The controller is configured to cause the energy source to output energy pulses and cause the focusing system to focus a focal volume of the energy pulses at or near the surface of the metallic substrate that is in contact with the liquid to create micro-scale or smaller surface texturing on the metallic substrate.
    Type: Grant
    Filed: December 16, 2022
    Date of Patent: April 30, 2024
    Assignee: Medtronic, Inc.
    Inventors: Xiangnan He, David A. Ruben
  • Patent number: 11969343
    Abstract: Methods for rotationally aligning transcatheter heart valve prosthesis within a native heart valve include percutaneously delivering the transcatheter heart valve prosthesis to the native heart valve, wherein the transcatheter heart valve prosthesis includes at least one imaging marker, receiving a cusp overlap viewing angle image and/or a coronary overlap viewing angle image of the transcatheter heart valve prosthesis within the native heart valve, determining, based on the cusp overlap viewing angle image and/or the coronary overlap viewing angle image and the at least one imaging marker, whether the transcatheter heart valve prosthesis is in a desired rotational orientation, if the at least one imaging marker in the cusp overlap viewing angle image and/or the coronary overlap viewing angle indicates that the transcatheter heart valve prosthesis is not in the desired rotational orientation, rotating the transcatheter heart valve prosthesis until the transcatheter heart valve prosthesis is in the desired rot
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: April 30, 2024
    Assignee: Medtronic, Inc.
    Inventors: Frank Harewood, Taylor Winters, Evelyn Birmingham, Sara Saul, Victor Kimball, Eric Pierce, Radhika Bhargav, Jeffrey Sandstrom, Caitlin Dorff
  • Patent number: 11963873
    Abstract: Systems and methods for modifying a heart valve annulus in a minimally invasive surgical procedure. A helical anchor is provided, having a memory set to a coiled shape or state. The helical anchor is further configured to self-revert from a substantially straight state to the coiled state. The helical anchor is loaded within a needle that constrains the helical anchor to the substantially straight state. The needle is delivered to the valve annulus and inserted into tissue of the annulus. The helical anchor is then deployed from the needle (e.g., the needle is retracted from over the helical anchor). Once deployed, the helical anchor self-transitions toward the coiled shape, cinching engaged tissue of the valve annulus.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: April 23, 2024
    Assignee: Medtronic, Inc.
    Inventors: Jason Quill, Cynthia Clague, Michael Green, Alexander J. Hill, Ana Menk, Paul Rothstein, Georg Bortlein
  • Patent number: 11964157
    Abstract: A system includes processing circuitry configured to determine, for each respective electrode of a plurality of electrodes, a score based on a ratio of an electrical efficiency for the respective electrode to a therapeutic window for the respective electrodes. The processing circuitry is further configured to determine, based on the score of each respective electrode, a ranking of the plurality of electrodes, and to select, based on the ranking, a subset of the plurality of electrodes for delivery of electrical stimulation therapy.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: April 23, 2024
    Assignee: Medtronic, Inc.
    Inventor: Janardan Vaidyanathan
  • Patent number: 11964147
    Abstract: A cranial implant may include an interior guide portion, an exterior guide portion, and one or more flanges. In one example, the interior guide portion may be disposed in a burr hole of a cranium and include a distal end, a proximal end, an inner surface, and an outer surface. The distal end may be inserted further into the burr hole than the proximal end. The inner surface may at least partially define a channel that accepts an elongated member, and the outer surface may extend around the full circumference of the burr hole. The exterior guide portion may be coupled to the interior guide portion and may contact an external surface of the cranium. The interior guide portion may define one or more surface features configured to secure the interior guide portion to the burr hole or secure an elongated member within the channel of the cranial implant.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: April 23, 2024
    Assignee: Medtronic, Inc.
    Inventors: Ryan T. Bauer, Byron Johnson, Arnis L. Kurmis
  • Patent number: 11964130
    Abstract: An implantable medical device (IMD) including a housing defining a propellant chamber, a drug reservoir located within the propellant chamber of the housing configured to receive a therapeutic fluid, a propellant gas within the propellant chamber; and a volume measurement system that includes a temperature sensor configured to measure a temperature of the propellant gas within in the propellant chamber and a pressure sensor configured to measure a pressure of the propellant gas within the propellant chamber. The volume measurement system is configured to measure the pressure and the temperature of the propellant gas to provide current volume information of the therapeutic fluid in the drug reservoir.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: April 23, 2024
    Assignee: Medtronic, Inc.
    Inventors: Erik J. Peterson, Jerel K. Mueller
  • Patent number: 11963798
    Abstract: Devices, systems, and methods for quantifying applied pressure by a device against an area of tissue. In particular, the present technology is related to medical devices including an optical element with a fiber Bragg grating, systems including the medical devices, and methods of quantifying applied pressure by the medical device. In one embodiment, a medical device comprises an elongate body including a distal portion and a proximal portion opposite the distal portion, and an optical element located at the distal portion of the elongate body. In one embodiment, the optical element include an optical fiber with a fiber Bragg grating. In one embodiment, the medical device is part of a medical system comprising a control unit in communication with the medical device, the control unit including an optical interrogator in communication with the optical element and processing circuitry configured to receive data from the optical interrogator.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: April 23, 2024
    Assignee: Medtronic, Inc.
    Inventors: Stephen Howard, Carl Schu
  • Patent number: 11964160
    Abstract: A medical device processor is configured to receive at least one cardiac electrical signal that is sensed during bilateral bundle branch pacing delivered from a bipolar electrode pair comprising an anode positioned along a first bundle branch and a cathode positioned along a second bundle branch opposite the first bundle branch, determine at least one feature from the first cardiac electrical signal, determine that the at least one feature meets first bundle branch capture criteria; and determine anodal bundle branch capture in response to the first bundle branch capture criteria being met.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: April 23, 2024
    Assignee: Medtronic, Inc.
    Inventors: Xiaohong Zhou, Wade M. Demmer, Robert W. Stadler
  • Patent number: 11957482
    Abstract: The control module of a first pacemaker included in an implantable medical device system including the first pacemaker and a second pacemaker is configured to set a pacing escape interval in response to a far field pacing pulse sensed by the first pacemaker. The far field pacing pulse is a pacing pulse delivered by the second pacemaker. The pacing escape interval is allowed to continue without restarting the in response to a far field intrinsic event sensed by the first pacemaker during the pacing escape interval. The first pacemaker delivers a cardiac pacing pulse to the heart upon expiration of the pacing escape interval.
    Type: Grant
    Filed: July 18, 2022
    Date of Patent: April 16, 2024
    Assignee: Medtronic, Inc.
    Inventors: Wade M. Demmer, Todd J. Sheldon, Saul E. Greenhut, James D. Reinke
  • Patent number: 11957893
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: April 16, 2024
    Assignee: Medtronic, Inc.
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde, David A. Dinsmoor, Duane L. Bourget, Forrest C M Pape, Gabriela C. Molnar, Joel A. Anderson, Michael J. Ebert, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Timothy J. Denison, Todd V. Smith
  • Patent number: 11957581
    Abstract: A system for replacing a heart valve of a patient. The system includes a delivery device and a prosthetic heart valve. The system is configured to be transitionable between a loaded state, a partially deployed state and a deployed state. In the loaded state, the prosthetic heart valve engages a coupling structure and is compressively retained within a primary capsule, which constrains the prosthetic heart valve in a compressed arrangement. In the partially deployed state, the prosthetic heart valve engages the coupling structure and is compressively retained within a secondary capsule, which constrains the prosthetic heart valve to a partially deployed arrangement. The partially deployed arrangement is less compressed than the compressed arrangement and less expanded than a deployed arrangement. In the deployed state, the primary and secondary capsules are retracted from over the prosthetic heart valve, which expands to the deployed arrangement and is released from the coupling structure.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: April 16, 2024
    Assignee: MEDTRONIC, INC.
    Inventors: Joel Racchini, Paul Rothstein, Jeffrey Sandstrom
  • Patent number: 11957894
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: April 16, 2024
    Assignee: Medtronic, Inc.
    Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C M Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
  • Patent number: 11951318
    Abstract: Devices and methods described herein relate to wireless recharging from a distance, and increasing the efficiency of such charging by intelligently or autonomously changing the rectification mode of the implanted device.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: April 9, 2024
    Assignee: Medtronic, Inc.
    Inventors: Andrew Fried, Todd V. Smith