Patents Assigned to Medtronic Physio-Control Corp.
  • Publication number: 20100087883
    Abstract: In general, the invention is directed to techniques for determining appropriate first aid and applying first aid that is appropriate. A first aid system receives patient status information from an input device or a sensor, and presents first aid information as a function of the received patient status information. The first aid system may be incorporated with an external defibrillator. The first aid system may acquire patient status information through an interaction with an operator, in which the first aid system asks the operator to supply patient status information. In one embodiment of the invention, the operator may supply patient status information by touching a diagram representing at least a portion of a human body.
    Type: Application
    Filed: October 16, 2009
    Publication date: April 8, 2010
    Applicant: Medtronic Physio-Control Corp.
    Inventors: Joseph L. Sullivan, Richard C. Nova, James M. Owen
  • Patent number: 7623915
    Abstract: In general, the invention is directed to techniques for determining appropriate first aid and applying first aid that is appropriate. A first aid system receives patient status information from an input device or a sensor, and presents first aid information as a function of the received patient status information. The first aid system may be incorporated with an external defibrillator. The first aid system may acquire patient status information through an interaction with an operator, in which the first aid system asks the operator to supply patient status information. In one embodiment of the invention, the operator may supply patient status information by touching a diagram representing at least a portion of a human body.
    Type: Grant
    Filed: July 16, 2003
    Date of Patent: November 24, 2009
    Assignee: Medtronic Physio-Control Corp.
    Inventors: Joseph L. Sullivan, Richard C. Nova, James M. Owen
  • Publication number: 20090264948
    Abstract: Defibrillator assemblies and methods to wirelessly transfer energy from an external source to a battery or other rechargeable power source within the defibrillator assembly. The transfer of energy may be through a non-contact interface on a defibrillator cradle or a docking station that mounts the defibrillator. The rate of energy transfer may be equal to the energy drain caused by self-discharge and automated self-testing. Accordingly, since the rate of energy transfer is lower than that required to run the defibrillator system continuously, several wireless methods of energy transfer may be used. In addition, the defibrillator assembly may communicate diagnostic and non-diagnostic data to the external source.
    Type: Application
    Filed: July 1, 2009
    Publication date: October 22, 2009
    Applicant: Medtronic Physio-Control Corp.
    Inventors: Paul S. Tamura, Daniel Yerkovich, Patrick F. Kelly, Richard C. Nova, Joseph Bradley Williamson, Stephen B. Johnson, Gary A. DeBardi
  • Patent number: 7570994
    Abstract: Defibrillator assemblies and methods to wirelessly transfer energy from an external source to a battery or other rechargeable power source within the defibrillator assembly. The transfer of energy may be through a non-contact interface on a defibrillator cradle or a docking station that mounts the defibrillator. The rate of energy transfer may be equal to the energy drain caused by self-discharge and automated self-testing. Accordingly, since the rate of energy transfer is lower than that required to run the defibrillator system continuously, several wireless methods of energy transfer may be used. In addition, the defibrillator assembly may communicate diagnostic and non-diagnostic data to the external source.
    Type: Grant
    Filed: April 25, 2003
    Date of Patent: August 4, 2009
    Assignee: Medtronic Physio-Control Corp.
    Inventors: Paul S. Tamura, Daniel Yerkovich, Patrick F. Kelly, Richard Nova, Joseph Bradley Williamson, Stephen B. Johnson, Gary DeBardi
  • Patent number: 7356740
    Abstract: Delivery of energy by a defibrillator or other medical device is inhibited when the processor or software that controls a module of the medical device operates abnormally. A windowed watchdog timer (WWDT) incorporated into one module of the medical device is used to control the operation of other modules of the medical device via a software-based extension technique. As a result, the risk of harm to the patient is reduced compared to medical devices that incorporate over-limit type watchdog timers. In addition, costs associated with implementing WWDTs in multiple modules of the defibrillator are avoided, thereby lowering the overall cost of implementation.
    Type: Grant
    Filed: October 17, 2005
    Date of Patent: April 8, 2008
    Assignee: MedTronic Physio-Control Corp.
    Inventors: James S. Neumiller, Gary A. DeBardi, Patrick F. Kelly
  • Patent number: 7308304
    Abstract: Devices, methods, and software implementing those methods for providing communicating external chest compression (ECC) devices and defibrillation (DF) devices, where the ECC and DF devices can be physically separate from each other. Both ECC and DF devices are able to operate autonomously, yet able to communicate with and cooperate with another device when present. Some ECC and DF devices are adapted to be physically and/or electrically coupled to each other. One ECC device includes a backboard, a chest compression member, a communication module, controller, and at least one sensor, electrode lead or electrode. One DF device includes a defibrillator module, a controller, and a communication module that can communicate with the ECC communication module. The communicating ECC and DF devices may deliver ECC, pacing, defibrillation, ventilation, and cooling therapies, and may deliver instructions to human assistants, in a coordinated and cooperative fashion.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: December 11, 2007
    Assignee: MedTronic Physio-Control Corp.
    Inventors: David R. Hampton, Ronald E. Stickney, Richard C. Nova, Stephen W. Radons, D. Craig Edwards, Cynthia Jayne, Joseph L. Sullivan, Steven E. Sjoquist
  • Patent number: 7289029
    Abstract: Techniques for initiating direct communication between an emergency medical device, such as an automated external defibrillator (AED) and a safety agency may include detecting an event and contacting the safety agency in response to the detected event and user authorization. For example, the AED may detect an event such as removal of the AED from a mount and alert an operator of the intent to send contact the safety agency. The AED determines whether an override command was received from the operator in a defined amount of time. When the operator does not input an override command, the AED interprets the absence of the override command as user authorization and contacts the safety agency via a communication unit. For instance, the AED may generate an advisory and send the advisory to the safety agency. The initiation of direct communication between the AED and the safety agency by the AED enables the operator to interact with a patient, e.g., perform CPR on the patient.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: October 30, 2007
    Assignee: MedTronic Physio-Control Corp.
    Inventors: Douglas K. Medema, Daniel W. Piraino, Richard E Kunz, Richard C. Nova, Cynthia P. Jayne
  • Patent number: 7245964
    Abstract: Techniques for managing recording of audio during a medical emergency are presented. An audio recorder may selectively record audio at selected time during the medical emergency, and generate correlation information to temporally correlate the recorded audio with the medical emergency. The audio recorder may establish receive synchronization information from a medical device used during the medical emergency, and may mark recorded audio according to the synchronization information. A computer may generate a record for the medical emergency that includes recorded audio correlated with medical emergency information generated by the medical device. The computer may correlate the recorded audio with the medical emergency information according the synchronization markings.
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: July 17, 2007
    Assignee: MedTronic Physio-Control Corp.
    Inventors: Mark P. Moore, John Giaever
  • Patent number: 7231258
    Abstract: In general, the invention provides techniques for wireless communication of medical event information between medical devices that treat a particular patient. In general, medical event information describes the condition and treatment of a patient. A medical device may detect another medical device via a wireless communications medium, and establish a local wireless communication session the other device in order to receive medical event information stored by the other device for a patient. The wireless communications medium may be a radio frequency communications medium, and the medical devices may establish a local wireless communication session according to any of a number of local wireless data communication standards. The medical event information received from the other medical device may be used to select a therapy, or to generate a report or patient chart detailing the condition and treatment of the patient.
    Type: Grant
    Filed: December 26, 2002
    Date of Patent: June 12, 2007
    Assignee: MedTronic Physio-Control Corp.
    Inventors: Mark P. Moore, Ward A. Silver
  • Patent number: 7179279
    Abstract: In general, the disclosure presents techniques for rapidly cooling the body of a patient. A cooling garment is placed in contact with the body of the patient. Spacers within the cooling garment create a space between at least a portion of the cooling garment and the body of the patient. The cooling garment receives a coolant from a coolant supply and delivers the coolant to the body of the patient. The heat from the body of the patient may evaporate the coolant. A carrier gas, which circulates within the space between the cooling garment and the patient, carries the gaseous coolant out of the cooling garment via an exit port. The rapid cooling of the patient may slow the neurological damage to the patient.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: February 20, 2007
    Assignee: MedTronic Physio Control Corp.
    Inventors: Stephen W. Radons, Larry R. Nygaard, Martin S. Abbenhouse, Steven M. Chester
  • Patent number: 7162306
    Abstract: In general, the invention facilitates improved inter-module communication within a medical device system, such as an automated external defibrillator (AED), by using a serial data interface based on the USB specification to transfer data between modules. As a result, data transmission rates may be improved significantly, thereby providing ample communication bandwidth for a variety of medical device applications. Further, the serial interconnect nature of the USB interface reduces the number of physical interconnects that are needed to support the interface, thereby reducing the design constraints on the medical device system.
    Type: Grant
    Filed: November 19, 2001
    Date of Patent: January 9, 2007
    Assignee: MedTronic Physio - Control Corp.
    Inventors: Glen D. Caby, James S. Neumiller, Jyhlin Chang, Curtis R. Jordan, Dana J. Olson, Ward A. Silver, Scott O. Schweizer
  • Patent number: 6865418
    Abstract: A docking station can engage a medical device such as a defibrillator. In a typical application, the docking station is mounted to a crash cart, and the medical device can be docked or undocked from the docking station. When the medical device is docked with the docking station, the medical device is held securely. In one embodiment, the docking station includes a base and a platform that supports the medical device, and the platform has at least some freedom to rotate relative to the base.
    Type: Grant
    Filed: March 4, 2002
    Date of Patent: March 8, 2005
    Assignee: Medtronic Physio-Control Corp.
    Inventor: Rodney Merry
  • Publication number: 20050038475
    Abstract: A method for the failsafe monitoring of the rotational movement of a shaft comprises a first step of picking up a characteristic pulse train with a number of pulses following one another at successive times, the time interval between the pulses is dependent on the rotational movement. A second step determines a monitoring time period and a third step monitors whether an expected pulse of the pulse train occurs within the monitoring time period. Finally, there is a fourth step of generating a control signal when the expected pulse does not occur within the monitoring time period. The monitoring time period is repeatedly adapted to the time interval of the pulses during monitoring.
    Type: Application
    Filed: August 29, 2003
    Publication date: February 17, 2005
    Applicant: Medtronic Physio-Control Corp.
    Inventors: Richard Nova, Ronald Stickney, Stephen Radons, David Hampton, D. Edwards, Cynthia Jayne, Joseph Sullivan, Steven Sjoquist
  • Patent number: 6839590
    Abstract: Techniques are described for charging an energy storage device, such as the high-voltage energy storage capacitors of an external defibrillation device, using an average current mode control technique. By controlling the average current in a transformer, energy may be stored rapidly and at controlled energy levels.
    Type: Grant
    Filed: October 22, 2001
    Date of Patent: January 4, 2005
    Assignee: Medtronic Physio-Control Corp.
    Inventor: Barry F. Waltman
  • Publication number: 20040267322
    Abstract: The present invention provides a portable defibrillator having a capacitor adapted to receive an electrical charge to deliver a defibrillation charge. Power terminals are provided to receive line power. A charging circuit is provided to charge the capacitor from line power after the power terminals receive line power. Therefore, the defibrillator is capable of receiving line power, such as standard 120 VAC, to charge the defibrillator's capacitor. By charging the capacitor directly through line power, the capacitor is charged in much less time than searching for and replacing a defibrillator battery.
    Type: Application
    Filed: June 27, 2003
    Publication date: December 30, 2004
    Applicant: Medtronic Physio-Control Corp.
    Inventors: Gregory T. Kavounas, Richard C. Nova, Joseph Bradley Williamson, Stephen B. Johnson, Daniel Yerkovich, Patrick F. Kelly, Paul S. Tamura
  • Patent number: 6823209
    Abstract: The invention presents techniques for identifying signals detected by electrodes on the body of a patient as part of a reading of the patient's electrocardiogram. A signal processor digitally filters the signal from the body, resulting in an electrocardiogram signal and a signal that identifies the presence and timing of signals from a pacemaker in the body. Other signals, such as a signal that reflects the quality of the electrical connection of the electrode to the body, may also be obtained by digital filtering.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: November 23, 2004
    Assignee: Medtronic Physio-Control Corp.
    Inventors: Dana J. Olson, Scott O. Schweizer, Tyler R. Hart, David Van Ess
  • Patent number: 6813517
    Abstract: A defibrillator can be programmed with multiple energy protocols to be followed when the defibrillator administers therapy to a patient. Each energy protocol defines a sequence of energy dosages or levels to be applied during consecutive shocks. When the defibrillator is activated, the first energy dosage in the sequence is administered to the patient. If the first dosage is ineffective, the defibrillator administers subsequent dosages to the patient. Programming multiple energy protocols into the defibrillator allows the defibrillator to be adapted for use on a variety of patients with diverse needs, such as children and large adults, thereby improving the versatility of the defibrillator. Furthermore, because the expert responder can select the energy protocol most appropriate for the needs of the particular patient, therapy may be more effective.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: November 2, 2004
    Assignee: Medtronic Physio-Control Corp.
    Inventors: John C. Daynes, Richard M. Lee
  • Publication number: 20040162510
    Abstract: Integrated devices for performing external chest compression (ECC) and defibrillation on a person and methods using the devices. Integrated devices can include a backboard, at least one chest compression member operably coupled to the backboard, and a defibrillator module operably coupled to the backboard. The integrated devices can include physiological sensors, electrodes, wheels, controllers, human interface devices, cooling modules, ventilators, cameras, and voice output devices. Methods can include defibrillating, pacing, ventilating, cooling, and performing ECC in an integrated, coordinated, and/or synchronous manner using the full capabilities of the device. Some devices include controllers executing methods for automatically performing the coordinated activities utilizing the device capabilities.
    Type: Application
    Filed: August 29, 2003
    Publication date: August 19, 2004
    Applicant: Medtronic Physio-Control Corp
    Inventors: Cynthia Jayne, Ronald E. Stickney, Richard C. Nova, Stephen W. Radons, David R. Hampton, D. Craig Edwards, Joseph L. Sullivan, Steven E. Sjoquist
  • Publication number: 20040162587
    Abstract: Devices, methods, and software implementing those methods for providing communicating external chest compression (ECC) devices and defibrillation (DF) devices, where the ECC and DF devices can be physically separate from each other. Both ECC and DF devices are able to operate autonomously, yet able to communicate with and cooperate with another device when present. Some ECC and DF devices are adapted to be physically and/or electrically coupled to each other. One ECC device includes a backboard, a chest compression member, a communication module, controller, and at least one sensor, electrode lead or electrode. One DF device includes a defibrillator module, a controller, and a communication module that can communicate with the ECC communication module. The communicating ECC and DF devices may deliver ECC, pacing, defibrillation, ventilation, and cooling therapies, and may deliver instructions to human assistants, in a coordinated and cooperative fashion.
    Type: Application
    Filed: August 29, 2003
    Publication date: August 19, 2004
    Applicant: Medtronic Physio-Control Corp.
    Inventors: David R. Hampton, Ronald E. Stickney, Richard C. Nova, Stephen W. Radons, D. Craig Edwards, Cynthia Jayne, Joseph L. Sullivan, Steven E. Sjoquist
  • Patent number: 6754526
    Abstract: The present invention is directed to a defibrillator having both a manual and an AED mode with corresponding user commands for both modes. The defibrillator includes a door which conceals manual mode commands, such that opening of the door puts the defibrillator in the manual mode and simultaneously reveals the manual mode command buttons. In one actual embodiment, the door includes apertures which allow access to the AED command buttons. When the door is in the open position, a keypad is revealed having manual commands which preferably take the form of buttons. In another actual embodiment, the door includes a switch which senses when the door is opened and sends the defibrillator into manual mode. The door includes a front side having AED command buttons, and a back side having manual mode command buttons. The door conceals a keypad having further manual mode command buttons.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: June 22, 2004
    Assignee: Medtronic Physio-Control Corp
    Inventors: John C. Daynes, Cathlene D. Buchanan, Douglas J. Hill, Richard M. Lee