Patents Assigned to Medtronic Vascular, Inc.
  • Patent number: 11969329
    Abstract: A “dry” packaging in which a prosthetic heart valve is packaged within a container with hydrogel that can be provided in many forms. Certain embodiments include hydrogel that is preloaded with glycerol or the like. The hydrogel regulates the humidity within the container through a diffusion-driven mechanism if a gradient of humidity between the inside and the outside of the hydrogel exists. Humidity regulation is important to prevent the tissue of the valve structure from drying out. When the partially-hydrated hydrogel is present within container, which is saturated with air of a predefined humidity, the water molecules from the air will be absorbed by the hydrogel if the air humidity is high (i.e. when the thermodynamics favor hydrogel hydration) or vice versa. Various embodiments are configured to also house at least a portion of a delivery device for delivering the prosthetic heart valve.
    Type: Grant
    Filed: May 3, 2022
    Date of Patent: April 30, 2024
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Raymond Ryan, David Clarke, Kshitija Garde, Ya Guo, Benjamin Wong, Yogesh Darekar, Luke Lehmann, Wei Wang, Laura McKinley, Paul Devereux, Joshua Dudney, Tracey Tien, Karl Olney
  • Patent number: 11963872
    Abstract: Delivery devices for a stented prosthetic heart valve. The delivery device includes a spindle, at least one cord, and a covering feature associated with the spindle for selectively covering at least a portion of a stented prosthetic heart valve tethered to the spindle in a delivery state. In some embodiments, the covering feature includes a tip mounted to the spindle. The tip can include an overhang region for selectively covering a portion of the stented prosthetic heart valve. In other embodiments, the tip can include a tip body and a compressible foam bumper. In yet other embodiments, the covering feature includes an outer sheath arranged to selectively cover the stented prosthetic heart valve. The outer sheath can be elastic and stretchable for recapturing a partially expanded prosthesis, for example by including one or more windows covered by a stretchable covering layer.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: April 23, 2024
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Brendan Vaughan, Maeve Britton, Martha Barajas-Torres, Susheel Deshmukh, Leonel Mendoza, Siyan Som, Michele Silver, Don Tran, Nathan Brown, Jill Mendelson
  • Patent number: 11957575
    Abstract: Stented prosthetic heart valves including a stent frame having a plurality of stent frame support structures collectively defining an interior surface, an exterior surface and a plurality of cells. The stented prosthetic heart valve further including a valve structure including valve leaflets disposed within and secured to the stent frame and defining a margin of attachment. The stented prosthetic heart valve including one or both of an outer paravalvular leakage prevention wrap and an inner skirt for supporting the valve leaflets. In various embodiments, the outer wrap is positioned entirely on one side of the margin of attachment. In embodiments including an inner skirt, the outer wrap and the inner skirt are on opposite sides of the margin of attachment such that the inner skirt and the outer wrap do not overlap. In other embodiments, the outer wrap includes a plurality of zones having varying thickness.
    Type: Grant
    Filed: July 13, 2022
    Date of Patent: April 16, 2024
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Elliot Howard, Amy Hallak, Ana Menk, Matthew Weston, Joel Racchini
  • Patent number: 11957845
    Abstract: Catheters include first and second segments that each include a proximal end and a distal end. A first connector of each catheter includes a first portion connected to the distal end of the first segment and a second portion connected to the proximal end of the second segment. The first portion and the second portion are engaged so that the first portion can rotated relative to the second portion about an axis of the first connector. The first segment and the second segment can bend in multiple planes via a rotation of the first portion relative to the second portion about the axis.
    Type: Grant
    Filed: March 10, 2023
    Date of Patent: April 16, 2024
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Ronja F. Pfeiffer, Declan P. Costello, Edmond Sheahan
  • Patent number: 11951269
    Abstract: A method for coating a medical device includes applying a second layer that includes a second drug on a first layer of on the medical device. The first layer includes a first drug, which may be in crystalline form. By selecting an appropriate solvent use in applying the second layer and appropriate process conditions, the second layer may be applied such that the first drug retains one or more therapeutic properties. For example, the second layer may be applied such that the first drug maintains its crystalline form. The first and second layers may be free of polymer.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: April 9, 2024
    Assignee: Medtronic Vascular, Inc.
    Inventors: Simone D'Onofrio, Massimo Morero, Bradley Steele, Federica Bellucci, Cassandra Morris
  • Patent number: 11938249
    Abstract: The present technology relates generally to endovascular prostheses. More particularly, the disclosure relates to endovascular prostheses having an outer surface of a graft material thereof associated with a hydrogel composition, which may swell upon implantation within a blood vessel, thereby mediating various complications associated with endovascular procedures. The hydrogel compositions can also include various stabilizing polymers and active agents to further aid their use in the body.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: March 26, 2024
    Assignee: Medtronic Vascular, Inc.
    Inventors: Jeffery Argentine, Matt Petruska, Keith Perkins, Samuel Robaina, Darren Galligan, Rajesh Radhakrishnan
  • Patent number: 11931063
    Abstract: A tissue-removing catheter for removing tissue in a body lumen includes an elongate body having an axis and proximal and distal end portions spaced apart from one another along the axis. A tissue-removing element is mounted on the distal end portion of the elongate body. The tissue-removing element is configured to remove the tissue as the tissue-removing element is rotated by the elongate body within the body lumen. A motor operatively engages the elongate body for driving rotation of the elongate body and tissue-removing element mounted on the elongate body. A controller is operatively connected to the motor and configured to perform a torque response routine to control a speed of the motor based on a set PWM value of the motor and a detected current applied to the motor during rotation of the elongate body and tissue-removing element.
    Type: Grant
    Filed: February 21, 2022
    Date of Patent: March 19, 2024
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Bryan Hansen, Aram Jamous
  • Patent number: 11931261
    Abstract: A prolapse prevention device formed by a continuous wire-like structure having a first end and a second end disconnected from each other. The continuous wire-like structure of the prolapse prevention device is substantially straight in a delivery configuration. The prolapse prevention device in a deployed configuration includes a centering ring of the continuous wire-like structure configured to seat adjacent to and upstream of an annulus of a heart valve in situ, a vertical support of the continuous wire-like structure which extends from the centering ring and includes an apex configured to seat against a roof of an atrium in situ, and a leaflet backstop of the continuous wire-like structure extending radially inward from the centering ring and configured to contact at least at least a first leaflet of the heart valve in situ to exert a pressure in a downstream direction on the first leaflet to prevent the first leaflet from prolapsing into the atrium.
    Type: Grant
    Filed: February 17, 2022
    Date of Patent: March 19, 2024
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Niall Duffy, David Farascioni, Adam Fitzgerald, Nathan Knutson, Ana Menk, Aran Murray, Jay Rassat
  • Patent number: 11911573
    Abstract: A catheter may include an elongate body including a proximal portion including a proximal end, and a distal tip portion. The distal tip portion may include an inner liner and a marker band circumferentially surrounding the inner liner. The distal tip portion also may include an outer jacket circumferentially surrounding a first portion of the inner liner and ending proximal of a proximal end of the marker band; and a tip outer jacket circumferentially surrounding a second portion of the inner liner and the marker band. The tip outer jacket extends distally past the marker band distal end to a distal tip of the elongate body, and a proximal end of the tip outer jacket may be laterally adjacent to a distal end of the outer jacket.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: February 27, 2024
    Assignee: Medtronic Vascular, Inc.
    Inventors: Mick Donegan, Kevin Ryan, Colm Connolly, Barry O'Connell
  • Patent number: 11903808
    Abstract: Aspects of the disclosure relate to “wet” transcatheter prosthetic heart valve or other implant packaging and assemblies in which a prosthetic heart valve or other implant is loaded into a first portion of a delivery device and positioned within a container in which sterilizing fluid is retained to sterilize interior portions of the container as well as provide moisture to prevent the implant from drying out. The disclosure also relates to methods of sterilizing the disclosed assemblies. Some disclosed methods include at least two sterilizing steps and adjustment of a mechanical seal member or formation of multiple seals so that areas proximate the seals are also sterilized during the sterilization process.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: February 20, 2024
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: David Clarke, Karina Doyle, Paul Devereux, Gerry Kearns, Padraigh Jennings, Constantino Fiuza, Stephen Montgomery
  • Patent number: 11903828
    Abstract: Delivery devices for a stented prosthetic heart valve. The delivery device includes a spindle, at least one cord, and a lateral control feature. The cord is tensioned to crimp the prosthesis to a compressed condition for delivery to a target site. Tension is lessened to allow the prosthesis to self-expand. In a tethered and expanded state in which the prosthesis has self-expanded and is connected to the spindle by the cord, the lateral control feature directs the spindle to a prescribed location relative to the prosthesis appropriate for a functional evaluation of the prosthesis. In some embodiments, the spindle is directed to a center of the prosthesis; in other embodiments, the spindle is held at a commissure of the prosthesis. The lateral control features of the present disclosure assume numerous forms.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: February 20, 2024
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Jill Mendelson, Michele Silver, Michael Gloss, Timothy Groen, Paul Rothstein, Jeffrey Sandstrom, Phil Haarstad, Joel Racchini, David Blaeser
  • Patent number: 11896260
    Abstract: A tissue-removing catheter for removing tissue in a body lumen includes a tube extending axially along the catheter. A junction box housing is located at a distal end of the tube. An elongate body extends distally from the junction box housing. The elongate body is sized and shaped to be received in the body lumen. A gear assembly is disposed in the junction box housing. The gear assembly engages the elongate body for rotating the elongate body. A tissue-removing element is mounted on a distal end portion of the elongate body. The tissue-removing element is configured to remove the tissue as the tissue-removing element is rotated by the elongate body within the body lumen.
    Type: Grant
    Filed: January 20, 2021
    Date of Patent: February 13, 2024
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Aram Jamous, John Kelly, Conor McMullen, Matthew Fleming, Colin William Meade, Grainne Teresa Carroll
  • Patent number: 11877930
    Abstract: Delivery devices for delivering a stented prosthesis to a target site are disclosed. Certain disclosed delivery devices include a handle assembly including an actuator, a shaft assembly interconnected to the handle assembly, and are configured to releasably retain the stented prosthesis to the delivery device with at least one elongate tension member. The delivery devices further include a torque shaft that is configured to apply and adjust the amount of tension in the each tension member. For example, the torque shaft can be configured to wind and unwind each elongate tension member around the torque shaft to correspondingly compress and expand the stented prosthesis. The torque shaft can be controlled with an actuator provided in the handle assembly, for example. In some embodiments, the actuator is further configured to axially move the torque shaft.
    Type: Grant
    Filed: January 7, 2021
    Date of Patent: January 23, 2024
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Alan McGuinn, Luke Lehmann, Wayne Falk
  • Patent number: 11871958
    Abstract: A tissue-removing catheter for removing tissue in a body lumen includes an elongate body having an axis, and proximal and distal end portions spaced apart from one another along the axis. The elongate body is sized and shaped to be received in the body lumen. A tissue-removing element is mounted on the distal end portion of the elongate body. The tissue-removing element is configured to remove the tissue as the tissue-removing element is rotated by the elongate body within the body lumen. An inner liner is received within the elongate body and defines a guidewire lumen. The inner liner is coupled to the tissue-removing element at a distal end portion of the inner liner. A coupling assembly is disposed in the tissue-removing element for coupling the inner liner to the tissue-removing element. The coupling assembly includes a bushing attached directly to the distal end portion of the inner liner.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: January 16, 2024
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Aram Jamous, John Kelly, Conor McMullen, Matthew Fleming, Colin William Meade, Grainne Teresa Carroll, Paul Morton
  • Patent number: 11865000
    Abstract: Distal tips for use with delivery catheters are disclosed that are configured to facilitate deflection of the catheters as they are advanced through the vasculature to a desired treatment site. Distal tips so configured realize one or more of the objectives of safer, more accurate steering of the catheter through the vasculature.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: January 9, 2024
    Assignee: Medtronic Vascular, Inc.
    Inventor: Niall Duffy
  • Patent number: 11864998
    Abstract: A delivery device for implanting a prosthetic heart valve. The device includes an inner shaft assembly, an outer sheath and a connector assembly. The inner shaft assembly defines a guide wire lumen. The outer sheath is slidably received over the inner shaft assembly, and forms an exit port proximate a distal end thereof. The connector assembly establishes a guide wire passageway between the guide wire lumen and the exit port. The connector assembly is configured to permit sliding movement of the outer sheath relative to the inner shaft assembly when deploying the prosthetic heart valve. The connector assembly can include first and second tubes that are slidable relative to one another in facilitating movement of the outer sheath relative to the inner shaft assembly.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: January 9, 2024
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Kieran Cunningham, Marc Anderson, Declan Costello, Patrick Griffin
  • Patent number: 11850030
    Abstract: Bending stresses experienced by a pressure sensor mounted to a fractional flow reserve catheter when tracking the catheter through the vasculature creates a distortion of the sensor resulting in an incorrect pressure reading or bend error. In order to isolate the sensor from bending stresses, the sensor is mounted with one end coupled to the distal end of the shaft while the other end of the sensor is not coupled to the catheter so that a portion of the sensor is spaced apart from the distal end of the shaft.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: December 26, 2023
    Assignee: Medtronic Vascular, Inc.
    Inventors: Gerry McCaffrey, Fiachra Sweeney, Christopher Murphy
  • Patent number: 11850173
    Abstract: The techniques of this disclosure generally relate to a modular stent device that is deployed into the ascending aorta via femoral access. The modular stent device is a base or anchor component to which additional modular stent devices can be attached to exclude diseased areas of the aorta while at the same time allowing perfusion of the brachiocephalic artery, the left common carotid artery, and/or the left subclavian artery.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: December 26, 2023
    Assignee: Medtronic Vascular, Inc.
    Inventors: Keith Perkins, Zachary Borglin, Mark Stiger, Julie Benton, Steven Claessens, Travis Rowe, Mark Young
  • Patent number: 11833044
    Abstract: A delivery system for percutaneously delivering a heart valve prosthesis to a site of a native heart valve includes a delivery catheter and a heart valve prosthesis. The delivery catheter includes an outer sheath, an inner shaft, and an orifice restriction mechanism. The heart valve prosthesis has a valve member and a docking member. When the orifice restriction mechanism is positioned within the docking member within an annulus of the native heart valve, the orifice restriction mechanism temporarily replicates the operation of the native heart valve until the valve member is positioned within the docking member.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: December 5, 2023
    Assignee: Medtronic Vascular, Inc.
    Inventors: Marian Lally, James R. Keogh, Jason Quill
  • Patent number: 11833043
    Abstract: A delivery device for delivery and deployment of a heart valve prosthesis with a torque anchoring mechanism includes a balloon having a shaped surface configured to engage a corresponding shaped surface of the heart valve prosthesis. The balloon is configured to rotate about a central longitudinal axis of the delivery device to rotate the heart valve prosthesis.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: December 5, 2023
    Assignee: Medtronic Vascular, Inc.
    Inventors: Marian Lally, Patrick Griffin, Luke McCartney