Patents Assigned to Metals Recovery Technology Inc.
  • Publication number: 20130064742
    Abstract: A process is disclosed for separation and recovery of vanadium, molybdenum, iron, tungsten, cobalt and nickel from alumina-based materials, mattes, ores, manufacturing by-products and waste. These elements are oxidized. The oxides are reacted with gaseous HCl to form volatile chloride-bearing compounds that subsequently sublimate. The volatile compounds are condensed in a downward-stepped thermal gradient that allows collection of moderate to high purity compounds of individual elements with exception of a nickel-cobalt co-condensate. Nickel is separated from cobalt by precipitation of nickel chloride from concentrated HCl pressurized with gaseous HCl.
    Type: Application
    Filed: September 17, 2012
    Publication date: March 14, 2013
    Applicant: METALS RECOVERY TECHNOLOGY INC.
    Inventor: JOSEPH L. THOMAS
  • Patent number: 8268267
    Abstract: A process is disclosed for separation and recovery of vanadium, molybdenum, iron, tungsten, cobalt and nickel from alumina-based materials, mattes, ores, manufacturing by-products and waste. These elements are oxidized. The oxides are reacted with gaseous HCl to form volatile chloride-bearing compounds that subsequently sublimate. The volatile compounds are condensed in a downward-stepped thermal gradient that allows collection of moderate to high purity compounds of individual elements with exception of a nickel-cobalt co-condensate. Nickel is separated from cobalt by precipitation of nickel chloride from concentrated HCl pressurized with gaseous HCl.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: September 18, 2012
    Assignee: Metals Recovery Technology Inc.
    Inventor: Joseph L. Thomas
  • Patent number: 7935173
    Abstract: A hydrometallurgical process for the recovery of metals selected from the group consisting of platinum, palladium, rhodium, ruthenium, iridium, and gold (PM) from solids includes dissolving the PM and base metals in an acidic halide aqueous solution and precipitating the PM using substituted quaternary ammonium salts (SQAS). PM having multiple oxidation states may be oxidized or reduced to separate through differential solubility. Au-SQAS is separated by washing the precipitate with a suitable organic solvent. Rh-SQAS and other PM with multiple oxidation states are dissolved in a strong halide acid solution and oxidized to separate soluble Rh. Pb and Pd are separated by boiling the initial acidic halide aqueous solution of metals in an excess of SQAS. The Pb and Pd filtrate is oxidized and then Pd-SQAS is dissolved in aqueous ammonia and separated from insoluble Pb. A slurry of Ir-SQAS and Pt-SQAS are separated through dissolution of Ir-SQAS with NaNO2.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: May 3, 2011
    Assignee: Metals Recovery Technology Inc.
    Inventors: Joseph L. Thomas, Gerald F. Brem
  • Patent number: 7604784
    Abstract: A process is disclosed for separation and recovery of vanadium, molybdenum, iron, tungsten, cobalt and nickel from alumina-based materials, mattes, ores, manufacturing by-products and waste. These elements are oxidized. The oxides are reacted with gaseous HCl to form volatile chloride-bearing compounds that subsequently sublimate. The volatile compounds are condensed in a downward-stepped thermal gradient that allows collection of moderate to high purity compounds of individual elements with exception of a nickel-cobalt co-condensate. Nickel is separated from cobalt by precipitation of nickel chloride from concentrated HCl pressurized with gaseous HCl.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: October 20, 2009
    Assignee: Metals Recovery Technology Inc.
    Inventor: Joseph L. Thomas
  • Patent number: 7513931
    Abstract: Processing for the extraction of metals consisting of platinum, palladium, iridium, rhodium, osmium, ruthenium, rhenium and gold (PGMRA) includes dissolution of the PGMRA metals from solid materials in an acidic aqueous solution, preferably with a halogen acid sparged with the corresponding halogen element. The acidic solution is then exposed to extraction material of non-cross-linked polyamine composite resin. The bound metal, following washing of the extraction material is eluted from the resin using stronger acidic processes than that provided in the wash of the resin. Conventional extraction by organic solvents or other known techniques is employed to recover the PGMRA metals. Rhodium is separated from the rest of the PGMRA metals either near the beginning or the end of the process. Rhodium is separated by creating hydroxides with the metals in the solution and then reacidifying the metals such that the rhodium remains as aquochlororhodate complexes.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: April 7, 2009
    Assignee: Metals Recovery Technology Inc.
    Inventor: Joseph L. Thomas