Patents Assigned to Millennium Engineering and Integration Company
  • Patent number: 8039138
    Abstract: Thermal batteries using molten nitrate electrolytes offer significantly higher cell voltages and improvements in energy and power density. A problem concerning gas-evolution reactions is solved by eliminating chloride ions, sodium ions, and moisture contaminants. One step is to avoid any chlorine-containing substances in any battery component. The decomposition of such substances into chloride ions results in passivating-film breakdown and gas-producing reactions with the electrolyte. Sodium ions also react with the anode and lead to decreased stability. Thus, the use of sodium ions in components of the battery is avoided. The effect of water in the melt relates to both the reactivity and out-gassing problem. Water in the melt will react with, and breach the insoluble and protective oxide film and can produce hydrogen gas. A method to measure water in the nitrate electrolyte melt via cyclic voltammetry, as well as means of eliminate water from the melt is presented.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: October 18, 2011
    Assignee: Millennium Engineering and Integration Company
    Inventors: Melvin H. Miles, Adam A. Grumet, Kurt W. Solomon
  • Publication number: 20100092851
    Abstract: Thermal batteries using molten nitrate electrolytes offer significantly higher cell voltages and improvements in energy and power density. A problem concerning gas-evolution reactions is solved by eliminating chloride ions, sodium ions, and moisture contaminants. One step is to avoid any chlorine-containing substances in any battery component. The decomposition of such substances into chloride ions results in passivating-film breakdown and gas-producing reactions with the electrolyte. Sodium ions also react with the anode and lead to decreased stability. Thus, the use of sodium ions in components of the battery is avoided. The effect of water in the melt relates to both the reactivity and out-gassing problem. Water in the melt will react with, and breach the insoluble and protective oxide film and can produce hydrogen gas. A method to measure water in the nitrate electrolyte melt via cyclic voltammetry, as well as means of eliminate water from the melt is presented.
    Type: Application
    Filed: December 8, 2009
    Publication date: April 15, 2010
    Applicant: Millennium Engineering and Integration Company
    Inventors: Melvin H. Miles, Adam A. Grumet, Kurt W. Solomon
  • Patent number: 7629075
    Abstract: Thermal batteries using molten nitrate electrolytes offer significantly higher cell voltages and marked improvements in energy and power densities over present thermal batteries. However, a major problem is gas-evolution reactions involving the molten nitrate electrolytes. This gassing problem has blocked the advantages offered by thermal batteries using molten nitrates. The solution to this gassing problem is to eliminate the chloride ion contaminates. The most important step in reducing chloride contamination is the avoidance of potassium perchlorate (KClO4) or any other chlorine-containing substances that can decompose to produce chloride ions in any thermal battery component. The Fe+KClO4 pyrotechnic used to activate thermal batteries is a key example. The decomposition of such substances into chloride ions (Cl—) results in passivating-film breakdown and gas-producing reactions with the molten nitrate electrolyte.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: December 8, 2009
    Assignee: Millennium Engineering and Integration Company
    Inventor: Melvin H. Miles
  • Publication number: 20090047573
    Abstract: Thermal batteries using molten nitrate electrolytes offer significantly higher cell voltages and marked improvements in energy and power densities over present thermal batteries. However, a major problem is gas-evolution reactions involving the molten nitrate electrolytes. This gassing problem has blocked the advantages offered by thermal batteries using molten nitrates. The solution to this problem is the use of chloride-free molten nitrate electrolytes. Most important is the avoidance of potassium perchlorate (KClO4) or any other chlorine-containing substances that can decompose to produce chloride ions in any thermal battery component. The Fe+KClO4 pyrotechnic used to activate thermal batteries is a key example. The decomposition of such substances into chloride ions (Cl?) results in passivating-film breakdown and gas-producing reactions with the molten nitrate electrolyte. These reactions largely involve the lithium-component of the anode used in thermal batteries such as Li—Fe (LAN), Li—Si, and Li—Al.
    Type: Application
    Filed: August 14, 2007
    Publication date: February 19, 2009
    Applicant: Millennium Engineering and Integration Company
    Inventor: Melvin H. Miles
  • Publication number: 20070152153
    Abstract: A hand-held, fleet deployable infrared camera with integrated hardware and software providing real time processing of infrared images. The camera senses variable temperature images over a selected object of interest and senses variable emissivities over the object. The camera also measures and corrects for reflected environmental radiation as well as corrections for the atmospheric path through which the object is viewed. A calibrated reference patch having known emissivity and reflectance is attached to an object of interest and viewed through the camera. The calibrated patch is used to provide correction for the environmental radiation reflected off the object. Once the environmental radiation correction is known, it can be used to correct measurements taken from the rest of the object of interest.
    Type: Application
    Filed: March 6, 2007
    Publication date: July 5, 2007
    Applicant: Millennium Engineering and Integration Company
    Inventors: Edward Bevan, Max Briggs, John Didomenico, Robert Gedridge
  • Publication number: 20060081777
    Abstract: A hand-held, fleet deployable infrared camera with integrated hardware and software providing real time processing of infrared images. The camera senses variable temperature images over a selected object of interest and senses variable emissivities over the object. The camera also measures and corrects for reflected environmental radiation as well as corrections for the atmospheric path through which the object is viewed. A calibrated reference patch having known emissivity and reflectance is attached to an object of interest and viewed through the camera. The calibrated patch is used to provide correction for the environmental radiation reflected off the object. Once the environmental radiation correction is known, it can be used to correct measurements taken from the rest of the object of interest.
    Type: Application
    Filed: October 15, 2004
    Publication date: April 20, 2006
    Applicant: Millennium Engineering and Integration Company
    Inventors: Edward Bevan, Max Briggs, John DiDomenico, Robert Gedridge