Patents Assigned to Mitsubishi Chemical Corporation
  • Publication number: 20240134296
    Abstract: The present disclosure relates to an electrophotographic photoreceptor including at least a photosensitive layer and a protective layer in sequence on a conductive support, and the protective layer contains a cured product of a curable compound, conductive particles having a band gap of 2.0 eV or more and 3.6 eV or less, and particles having a band gap of 8.0 eV or more.
    Type: Application
    Filed: December 8, 2023
    Publication date: April 25, 2024
    Applicant: Mitsubishi Chemical Corporation
    Inventors: Takahiro Choda, Daisuke Yamazaki, Akira Ando
  • Publication number: 20240128511
    Abstract: A nonaqueous electrolyte solution including at least an electrolyte, and a nonaqueous solvent, wherein the nonaqueous electrolyte solution contains a compound represented by the following general formula (A): wherein R1 to R3 represent optionally substituted organic groups having 1 to 20 carbon atoms, and a cyclic carbonate compound having a fluorine atom in an amount of 0.01% by mass to 50.
    Type: Application
    Filed: December 27, 2023
    Publication date: April 18, 2024
    Applicants: Mitsubishi Chemical Corporation, MU IONIC SOLUTIONS CORPORATION
    Inventors: Eiji NAKAZAWA, Yoichi OOHASHI, Minoru KOTATO, Takamichi MITSUI, Takayuki AOSHIMA, Takeshi NAKAMURA
  • Publication number: 20240124752
    Abstract: Provided is the following as an adhesive sheet having excellent flexibility at low temperature and excellent recovering ability. An adhesive sheet formed from an adhesive composition [I]containing an acrylic polymer (A), wherein the acrylic polymer (A) has a structural portion derived from a compound (a1) represented by (Formula 1) and a structural portion derived from a hydroxy group-containing (meth)acrylate (a2), and the adhesive sheet has a storage shearing elastic modulus (G?) at ?40° C. of not greater than 1,200 kPa, CH2?CH(R1)—COO(R2)??(Formula 1) wherein R1 represents a hydrogen atom or a methyl group, and R2 represents a linear or branched alkyl group having 5 to 20 carbon atoms.
    Type: Application
    Filed: December 8, 2023
    Publication date: April 18, 2024
    Applicant: Mitsubishi Chemical Corporation
    Inventors: Kazunobu Tada, Masaya Minemoto
  • Publication number: 20240124685
    Abstract: The purpose of the present invention is to provide a methyl methacrylate-containing composition with high quality stability during storage. This can be solved with a methyl methacrylate-containing composition, a pyrazine compound represented by Formula (1) (component A1), and a polymerization inhibitor (Component B1), in which the concentration of methyl methacrylate is from 99 to 99.99% by mass.
    Type: Application
    Filed: December 4, 2023
    Publication date: April 18, 2024
    Applicant: Mitsubishi Chemical Corporation
    Inventors: Yu Kurihara, Tatsuya Suzuki, Yuki Kato, Wataru Ninomiya, Maiko Kakimoto
  • Patent number: 11959197
    Abstract: A first aspect of the present invention is carbon fiber wherein the surface of a monofilament has a center line average roughness Ra of 6.0 nm or more and 13 nm or less, and the monofilament has a long diameter/short diameter ratio of 1.11 or more and 1.245 or less. A second aspect of the present invention is carbon fiber precursor acrylic fiber wherein the surface of a monofilament has a center line average roughness Ra of 18 nm or more and 27 nm or less, and the monofilament has a long diameter/short diameter ratio of 1.11 or more and 1.245 or less. The carbon fiber according to the first aspect is obtained by stabilizing and carbonizing under specific conditions the carbon fiber precursor acrylic fiber according to the second aspect.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: April 16, 2024
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Naomasa Matsuyama, Yuutarou Nakamura, Norifumi Hirota, Hiroko Matsumura, Katsuhiko Ikeda, Kouki Wakabayashi, Tadashi Ootani, Akihiro Itou, Kenji Hirano, Akito Hatayama, Kenji Kaneta, Atsushi Nakajima
  • Patent number: 11961996
    Abstract: Provided are: a negative electrode material for nonaqueous secondary batteries, which can yield a high-capacity nonaqueous secondary battery having excellent discharge rate characteristics; and a negative electrode for nonaqueous secondary batteries and a nonaqueous secondary battery. Also provided is a nonaqueous secondary battery having excellent charge-discharge efficiency. The negative electrode material for nonaqueous secondary batteries includes carbonaceous particles (A) and silicon oxide particles (B), and satisfies the followings: a) the average particle size (50% cumulative particle size from the smaller particle side; d50) is 3 ?m to 30 ?m, and the 10% cumulative particle size from the smaller particle side (d10) is 0.1 ?m to 10 ?m; b) the ratio (R1=d90/d10) between the 90% cumulative particle size from the smaller particle side (d90) and the d10 is 3 to 20; and c) the ratio (R2=d50/d10) between the d50 and the d10 is 1.7 to 5.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: April 16, 2024
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Shunsuke Yamada, Nobuyuki Ishiwatari, Naoto Maru, Atsushi Watarai
  • Publication number: 20240117248
    Abstract: A phosphor having a favorable emission peak wavelength, narrow full width at half maximum, and/or high emission intensity is provided. Additionally, a light-emitting device, an illumination device, an image display device, and/or an indicator lamp for a vehicle having favorable color rendering, color reproducibility and/or favorable conversion efficiency are provided. The present invention relates to a phosphor including a crystal phase having a composition represented by a specific formula, and having a minimum reflectance of 20% or more in a specific wavelength region, in which the specific wavelength region is from the emission peak wavelength of the phosphor to 800 nm, and a light-emitting device comprising the phosphor.
    Type: Application
    Filed: December 4, 2023
    Publication date: April 11, 2024
    Applicants: Mitsubishi Chemical Corporation, NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Tomoyuki KURUSHIMA, Yuhei Inata, Naoto Hirosaki
  • Publication number: 20240120605
    Abstract: A partition member, which separates objects to be separated from each other, includes a porous sheet, and a water absorbing material provided at least either on a surface of the porous sheet or inside the porous sheet. The partition member that has dimensions of 100 mm×60 mm and has been stored for 24 hours at a temperature of 25° C., a humidity of 40%, and an atmospheric pressure of 1 atm is used as a sample, and a ratio of a water absorption volume when a portion of 10 mm from an lower end of a 60 mm side of the sample is immersed in water for 2 minutes, to a volume of the sample {the water absorption volume (cm3) divided by a volume (cm3) of the partition member} is in a range of 0.1 to 0.9.
    Type: Application
    Filed: December 21, 2023
    Publication date: April 11, 2024
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Tomohiro KAWAI, Kei HASHIMOTO
  • Publication number: 20240116031
    Abstract: An object of the present invention is to provide a catalyst that enables production of an unsaturated carboxylic acid and/or unsaturated carboxylic acid ester represented by methyl methacrylate with high selectivity. The object is achieved by a catalyst including: one or more elements selected from boron, magnesium, zirconium, hafnium, and titanium; one or more elements selected from alkali metal elements; and silica; the catalyst having a peak height ratio I2/I1 of 0 to 1.2, wherein I1 represents the peak height at 417±10 cm?1, and I2 represents the peak height at 1050±10 cm?1, as obtained by Raman spectroscopy.
    Type: Application
    Filed: November 30, 2023
    Publication date: April 11, 2024
    Applicant: Mitsubishi Chemical Corporation
    Inventors: Akio Hayashi, Yuuki Tsujimoto, Toshio Hasegawa, Kazufumi Nishida, Masaya Fujisue, Wataru Ninomiya
  • Patent number: 11951692
    Abstract: The purpose of the present invention is to provide a fiber-reinforced resin material having minimal directionality of strength as well as excellent productivity, a method and device for manufacturing a fiber-reinforced resin material whereby a molded article is obtained, and a device for inspecting a fiber bundle group. A method for manufacturing a sheet-shaped fiber-reinforced resin material in which a paste (P1) is impregnated between cut fiber bundles (CF), the method for manufacturing a fiber-reinforced resin material including a coating step applying a coating of a paste (P1) on a first sheet (S11) conveyed in a predetermined direction, a cutting step for cutting a long fiber bundle (CF) using a cutter (113A), a scattering step for dispersing the cut fiber bundles (CF) and scattering the cut fiber bundles (CF) on the paste (P1), and an impregnation step for pressing a fiber bundle group (F1) and the paste (P1) on the first sheet (S11) and impregnating the paste (P1) between the fiber bundles (CF).
    Type: Grant
    Filed: January 18, 2023
    Date of Patent: April 9, 2024
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Hiroshi Iwata, Nobuyuki Yamamoto, Hajime Okutsu, Ryuichi Ishikawa, Koichi Akiyama, Takayuki Kobayashi
  • Patent number: 11952509
    Abstract: The conductive composition of the present invention includes a conductive polymer (A) having an acidic group, and a basic compound (B) having a cyclic amide and an amino group in its molecule. The conductive film of the present invention is formed from the conductive composition. The laminate of the present invention includes a substrate; an electron beam resist layer, formed on at least one surface of the substrate; and a conductive film formed on the electron beam resist layer.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: April 9, 2024
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Masashi Uzawa, Shinji Saiki, Akira Yamazaki
  • Publication number: 20240110071
    Abstract: Provided is a UV-curable water-based ink excellent in coating film performance, especially alcohol resistance and scratch resistance. The UV-curable water-based ink includes at least a UV-curable oligomer, a colorant, and a mercapto compound, in which the UV-curable oligomer has a structural unit derived from a compound represented by the following chemical formula.
    Type: Application
    Filed: October 23, 2023
    Publication date: April 4, 2024
    Applicant: Mitsubishi Chemical Corporation
    Inventors: Tamae Karasawa, Keisuke Inaba, Tomoko Nakagawa, Shuhei Sakatani, Kengo Kasai
  • Publication number: 20240105449
    Abstract: A conductive C-plane GaN substrate has a resistivity of 2×10?2 ?·cm or less or an n-type carrier concentration of 1×1018 cm?3 or more at room temperature. At least one virtual line segment with a length of 40 mm can be drawn at least on one main surface of the substrate. The line segment satisfies at least one of the following conditions (A1) and (B1): (A1) when an XRC of (004) reflection is measured at 1 mm intervals on the line segment, a maximum value of XRC-FWHMs across all measurement points is less than 30 arcsec; and (B1) when an XRC of the (004) reflection is measured at 1 mm intervals on the line segment, a difference between maximum and minimum values of XRC peak angles across all the measurement points is less than 0.2°.
    Type: Application
    Filed: September 29, 2023
    Publication date: March 28, 2024
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Yutaka MIKAWA, Hideo FUJISAWA, Tae MOCHIZUKI, Hideo NAMITA, Shinichiro KAWABATA
  • Publication number: 20240101502
    Abstract: A production method of one or both of (meth)acrolein and (meth)acrylic acid using a heat-exchange-type reaction vessel having a reaction tube at an inner part is provided, the method including causing an oxidation reaction of a raw material supplied to the reaction tube while circulating a heat medium to an outer side of the reaction tube to produce one or both of (meth)acrolein and (meth)acrylic acid, in which the reaction tube has i layers, which are a plurality of catalyst layers having different catalyst charging amounts per unit volume, in a longitudinal direction of the reaction tube, provided that i is an integer of 2 or more, and the oxidation reaction satisfies Expression (1). ??0.275(mol·K·h?1·W?1)??(1) Provided that (AAA) is satisfied. ?=F×(m1/?j=1imj)/(U×A). . .
    Type: Application
    Filed: November 21, 2023
    Publication date: March 28, 2024
    Applicant: Mitsubishi Chemical Corporation
    Inventor: Keisuke Baba
  • Publication number: 20240100504
    Abstract: A synthetic adsorbent, where a maximum value of a differential pore volume under a pressure condition of 0.5 to 30.0 psia is greater than 0.05 mL/g. A method of measuring the differential pore volume includes reducing a pressure in a sample container where the synthetic adsorbent that has been dried is placed to 10 Pa or less, mercury is degassed by reducing the pressure to 10 Pa or less, and the sample container is filled with the mercury at a pressure of 0.5 psia, measuring a mercury intrusion amount when the pressure in the sample container filled with the mercury is increased from 0.5 to 30.0 psia, and calculating the differential pore volume by dividing an amount of an increase in the mercury intrusion amount when a first-stage pressure calculated based on the mercury intrusion amount measured in the measuring is increased, by a measured amount of the synthetic adsorbent.
    Type: Application
    Filed: December 8, 2023
    Publication date: March 28, 2024
    Applicants: Mitsubishi Chemical Corporation, Kyowa Kirin Co., Ltd.
    Inventors: Yoshiya TASHIRO, Shouhei OHARA, Jun TAKEHARA, Takashi ISHIHARA, Shinsuke KIKUCHI
  • Publication number: 20240101898
    Abstract: A phosphor having a favorable emission peak wavelength, narrow full width at half maximum, and/or high emission intensity is provided. Additionally, a light-emitting device, an illumination device, an image display device, and/or an indicator lamp for a vehicle having favorable color rendering, color reproducibility and/or favorable conversion efficiency are provided. The present invention relates to a phosphor including a crystal phase having a composition represented by a specific formula, and when, in a powder X-ray diffraction spectrum of the phosphor, the intensity of a peak that appears in a region where 2?=38-39° is designated as Ix and the intensity of a peak that appears in a region where 2?=37-38° is designated as Iy, the relative intensity Ix/Iy of Ix to Iy is 0.140 or less, and a light-emitting device comprising the phosphor.
    Type: Application
    Filed: December 4, 2023
    Publication date: March 28, 2024
    Applicants: Mitsubishi Chemical Corporation, NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Tomoyuki Kurushima, Yuhei Inata, Naoto Hirosaki
  • Publication number: 20240107870
    Abstract: Provided are: a highly durable polymer having a high hole-injection/transport capacity; and a composition for an organic electroluminescent element, which contains the polymer.
    Type: Application
    Filed: November 1, 2023
    Publication date: March 28, 2024
    Applicant: Mitsubishi Chemical Corporation
    Inventors: Yanjun LI, Tomokazu UMEMOTO, Hideki GOROHMARU, Koichiro IIDA, Kouji ADACHI
  • Publication number: 20240101775
    Abstract: A prepreg including a thermosetting resin composition and a self-assembled carbon fiber bundle impregnated with the thermosetting resin composition.
    Type: Application
    Filed: December 4, 2023
    Publication date: March 28, 2024
    Applicant: Mitsubishi Chemical Corporation
    Inventors: Masashi Ikeda, Kazuki Tsujikawa, Takeshi Ishikawa, Jun Matsui
  • Patent number: 11939504
    Abstract: The present invention aims to provide a scintillator which has a short fluorescence decay time, whose fluorescence intensity after a period of time following radiation irradiation is low, and which shows largely improved light-transmittance. A scintillator represented by the following General Formula (1), the scintillator including Zr, having a Zr content of not less than 1500 ppm by mass therein, and being a block of a sintered body. QxMyO3z:A . . . (1) (wherein in General Formula (1), Q includes at least one or more kinds of divalent metallic elements; M includes at least Hf; and x, y, and z independently satisfy 0.5?x?1.5, 0.5?y?1.5, and 0.7?z?1.5, respectively).
    Type: Grant
    Filed: June 23, 2022
    Date of Patent: March 26, 2024
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Koji Hazu, Kentaro Horibe, Tetsuya Kawano, Keiji Yamahara, Shunsuke Kurosawa, Akira Yoshikawa
  • Patent number: 11939413
    Abstract: An acrylic resin powder soluble in acetone, including a multi-stage polymer (M) that includes a polymer (B) obtained by polymerizing a monomer mixture (b) containing methyl methacrylate and an alkyl (meth)acrylate ester (mb) in the presence of a polymer dispersion that contains a polymer (A) obtained by polymerizing a monomer mixture (a) containing an alkyl (meth)acrylate ester (ma), in which an alkyl group in the alkyl (meth)acrylate ester (ma) has 4 to 8 carbon atoms, an alkyl group in the alkyl (meth)acrylate ester (mb) has 4 to 8 carbon atoms, a glass transition temperature of the polymer (A) is 20° C. or lower, a glass transition temperature of the polymer (B) obtained by polymerizing the monomer mixture (b) is 55° C. or higher, and a mass average molecular weight of the multi-stage polymer (M) is 10,000 or more and 300,000 or less.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: March 26, 2024
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Shogo Miyai, Toru Kondo