Patents by Assignee MTU Friedrichshafen
  • Patent number: 9624860
    Abstract: Disclosed is a method for the control and regulation of a V-type internal combustion engine (1), comprising an independent common rail system on the A side and an independent common rail system on the B-side, in which the rotational speed of the internal combustion engine (1) is regulated in a speed control loop and a nominal torque as an adjusted variable of the rotational speed governor is limited during the starting procedure to a starting torque for representing a nominal injection null set.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: April 18, 2017
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventor: Armin Dölker
  • Patent number: 9624822
    Abstract: A relief valve for turbines of exhaust turbochargers. Hot exhaust gas flows against this type of relief valves and the relief valves heat up significantly. Sensitive components such as the springs or the membrane can be damaged as a result. The relief valves are normally designed so that the membrane and a radiation panel are adjacent to a first chamber. Air is continuously guided through the first chamber in order to specifically cool the membrane and protect the membrane from excessive heating.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: April 18, 2017
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventor: Michael Dobrowolski
  • Patent number: 9624867
    Abstract: Proposed is a method for open-loop and closed-loop control of an internal combustion engine (1), the rail pressure (pCR) being controlled via a low pressure-side suction throttle valve (4) as the first pressure-adjusting element in a rail pressure control loop. The invention is characterized in that a rail pressure disturbance variable is generated to influence the rail pressure (pCR) via a high pressure-side pressure control valve (12) as the second pressure-adjusting element, by means of which fuel is redirected from the rail (6) into a fuel tank (2).
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: April 18, 2017
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventor: Armin Dölker
  • Patent number: 9617934
    Abstract: A method for torque control of an internal combustion engine includes a pressure sensor that is associated with at least one, but at the most two cylinders of the internal combustion engine, whereby an cylinder internal pressure for the cylinder associated with the pressure sensor is detected. The method carries out an adjustment of injection characteristics for the injectors allocated to the individual cylinders of the internal combustion engine by way of a method which is independent from the detected cylinder pressure. A torque control for the internal combustion engine is performed based on the detected cylinder pressure.
    Type: Grant
    Filed: April 10, 2015
    Date of Patent: April 11, 2017
    Assignee: MTU Friedrichshafen GmbH
    Inventors: Jörg Remele, Aron Toth
  • Publication number: 20170074146
    Abstract: A method for determining the aging of an oxidation catalyst in an exhaust gas aftertreatment system of an internal combustion engine, having the following steps: ascertaining a soot burn rate of a particle filter of the exhaust gas aftertreatment system; adapting a function having at least one adaptation parameter to the soot burn rate dependent on at least one variable, a value of the adaptation parameter depending on an aging of the oxidation catalyst; and determining the aging of the oxidation catalyst using the adaptation parameter value ascertained by adapting the function.
    Type: Application
    Filed: September 11, 2014
    Publication date: March 16, 2017
    Applicant: MTU Friedrichshafen GmbH
    Inventors: Boban MALETIC, Gerald FAST, Jens NIEMEYER, Tim SPÄDER, Ralf MÜLLER
  • Publication number: 20170067384
    Abstract: A method for regenerating a particle filter during the operation of an internal combustion engine, having the following steps: detecting at least one loading parameter which is characteristic of a present loading of the particle filter, wherein an active regeneration measure can be carried out recurrently in a manner dependent on the loading parameter; determining a time window for a regeneration of the particle filter; and determining a prediction for an operating state of the internal combustion engine expected within the time window, wherein the active regeneration measure at a time indicated for it by the loading parameter is skipped if the prediction predicts that, within the time window, an operating state of the internal combustion engine will arise in which a regeneration of the particle filter takes place without an active regeneration measure.
    Type: Application
    Filed: January 27, 2015
    Publication date: March 9, 2017
    Applicant: MTU FRIEDRICHSHAFEN GMBH
    Inventor: Ralf MÜLLER
  • Patent number: 9574508
    Abstract: The invention relates to a method and an arrangement for operating an internal combustion engine. In the method a first distribution of values for at least one variable is used, the variable describing a physical property of the internal combustion engine, and over a second time period values for this variable are recorded and classified, such that a second distribution is determined. The first distribution is then compared with the second distribution such that the behavior of the internal combustion engine can be adapted on the basis thereof.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: February 21, 2017
    Assignee: MTU Friedrichshafen GmbH
    Inventor: Tim Späder
  • Patent number: 9574515
    Abstract: A method for operating an internal combustion engine having at least one fuel injection valve for introducing fuel into a combustion chamber of the internal combustion engine, the valve being supplied with a specified current intensity in order to adjust a specified flow cross-section of a fuel fluidic connection in the combustion chamber. The maximum specified current intensity during normal operation is equal to a first current intensity and during a release operation is equal to a second, higher current intensity.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: February 21, 2017
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Ronald Hegner, Michael Willmann, Marc Radl
  • Patent number: 9562459
    Abstract: Reciprocating-piston internal combustion engines having different power outputs are to be equipped simply, reliably and inexpensively with a device for the selective catalytic reduction of the exhaust gases having an SCR module for a reciprocating-piston internal combustion engine, comprising a housing and/or a frame, an exhaust-gas section which delimits a flow duct for guiding through exhaust gas, having an inlet opening for introducing the exhaust gas and an outlet opening for discharging the exhaust gas, an SCR catalytic converter which is arranged inside the flow duct, at least one injection element for adding a reducing agent, for example ammonia or a urea solution, to the exhaust gas which is guided through the flow duct. This problem is solved by virtue of the fact that the SCR module comprises at least one delivery device (13) for feeding the reducing agent to the injection element at a predetermined pressure.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: February 7, 2017
    Assignee: MTU Friedrichshafen GmbH
    Inventors: Benjamin Sauter, Holger Sinzenich, Katharina Görner, Mathias Bauknecht, Klaus Wehler
  • Patent number: 9556840
    Abstract: The invention describes a method and an arrangement for the regulation of the rail pressure in an internal combustion engine. In the method, the rail pressure is regulated, with a target high pressure being predefined. Said target high pressure is filtered, before being input, by way of a target high pressure filter which is configured as a dynamic target high pressure filter.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: January 31, 2017
    Assignee: MTU Friedrichshafen GmbH
    Inventor: Armin Dölker
  • Patent number: 9458786
    Abstract: Proposed is a method for monitoring a passive pressure limiting valve (11) via which fuel is discharged from the rail (6) of a common rail system into the fuel tank (2), in which method, upon the detection of a defective rail pressure sensor (9), a switch is made from a rail pressure regulation mode into an emergency mode, wherein in the emergency mode, the rail pressure is successively increased until the pressure limiting valve (11) reacts, in which method, in the emergency mode, the pressure limiting valve (11) is set as open when the starting phase of the internal combustion engine has additionally been detected as having ended, and in which method, in addition, the opening duration of the pressure limiting valve (11) is monitored.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: October 4, 2016
    Assignee: MTU Friedrichshafen GmbH
    Inventor: Armin Dölker
  • Patent number: 9441572
    Abstract: Proposed is a method for controlling and regulating an internal combustion engine (1), in which the rail pressure (pCR) is controlled via a suction throttle (4) on the low pressure side as a first pressure-adjusting element in a rail pressure control loop. The invention is characterized in that a rail pressure disturbance variable (VDRV) is generated in order to influence the rail pressure (pCR) via a pressure control valve (12) on the high pressure side as a second pressure-adjusting element, by means of which fuel is redirected in a controlled manner from the rail (6) into a fuel tank (2), the rail pressure disturbance variable (VDRV) being calculated using a corrected target volume flow (Vk(SL)) of the pressure control valve (12).
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: September 13, 2016
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventor: Armin Dölker
  • Patent number: 9441530
    Abstract: In a connection box for direct connection to a charging fluid duct of a charging fluid supply designed for intermixing a charge air and an exhaust gas to form a charging fluid, comprising a housing with a charge air connecting space including at least a connection for a charge air guide arrangement, and at least one mixing channel in communication with the charge air connecting space via a connection for supplying charge air to the mixing channel and the mixing channel including a supply side exhaust gas connection for an exhaust gas recirculation and a charging fluid-side mixing channel connection for the charging fluid duct, the connection is arranged at a first front side of the housing, and the mixing channel extends along a longitudinal side of the housing from the first front side to a second front side of the housing opposite the first front side.
    Type: Grant
    Filed: April 28, 2012
    Date of Patent: September 13, 2016
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Hermann Baumann, Dominik Seiderer, Walter Gauss
  • Patent number: 9441537
    Abstract: The exemplary illustrations generally include a method for controlling and regulating an internal combustion engine-generator system 1000 with a plurality of internal combustion engine-generator units 400 generating electric power which can be connected to a distribution grid and load consumers 200 consuming electric power, with a unit 400 comprising an internal combustion engine 401, 402, 404-408 with variable engine speeds and a generator 421-428, characterized in the steps: determining a given operating state Z* of the internal combustion engine 401, 402, 404-408 of at least one internal combustion engine-generator unit 400; deducting a range of operating states ZB* describing an electric load override Ladm depending on the given operating state Z* for the internal combustion engine of at least one internal combustion engine-generator unit 400, with the determination of the given operating state Z* and the deduction of the range of operating range ZB* occurring based on the calculation model 504 for the in
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: September 13, 2016
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Gerhard Filip, Claus-Oliver Schmalzing, Hans-Juergen Thomas, Tobias Kohl
  • Patent number: 9422885
    Abstract: The present invention relates to a method for reducing the particle emissions of an internal combustion engine over its service life. The number of cylinders of the internal combustion engine in which post-injection is carried out is incrementally increased during the service life of the internal combustion engine. The increase in the number of cylinders receiving a post-injection may depend upon at least one parameter, which may be a running time, a distance performance, a particle concentration in exhaust gas, a load profile, or other parameter. The individual cylinders receiving post-injection may be changed to distribute wear.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: August 23, 2016
    Assignee: MTU Friedrichshafen GmbH
    Inventors: Michael Prothmann, Johannes Baldauf, Markus Fleckhammer
  • Patent number: 9416715
    Abstract: A method and an arrangement for monitoring an exhaust system of an internal combustion engine. Temperature profiles upstream and downstream of an installation location of a catalytic converter are measured in order to determine whether or not a catalytic converter is installed.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: August 16, 2016
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Jens Niemeyer, Aron Toth, Tim Spaeder
  • Patent number: 9404508
    Abstract: The invention relates to a suction housing (1) for an internal combustion engine, especially for arranging between a first (2) and a second (3) compressor of an internal combustion engine, characterized in that the suction housing (1) comprises an inner space (8) defined by a bottom element (9), a first (10) and a second (11) opposing lateral wall elements projecting from the bottom element (9), and a first (12) and a second (13) opposing front wall elements projecting from the bottom element. An open end (14) having an inlet (14a) via which charge air can enter the inner space (8) of the suction housing (1) is formed opposite the bottom element (9), and a web element (17) projecting from the bottom element (9) and arranged between the first (10) and the second (11) lateral wall elements is located in the inner chamber, said web element interconnecting the first (12) and the second (13) front wall elements.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: August 2, 2016
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Rolf Gunkel, Johannes Hiry, Jörg Andre Reitz
  • Patent number: 9404413
    Abstract: The invention relates to an internal combustion machine (10), comprising a combustion engine (1) having an exhaust gas side (AGS) and a charging fluid side (LLS), and having a supercharger system (14) comprising an exhaust gas turbo charger (40) for charging the combustion engine (1), having a condenser array (41) on the charging fluid side (LLS) and a turbine arrangement (42) on the exhaust gas side (AGS), a compressor (3), the primary side (I) of which is connected to the charging fluid side (LLS), and the secondary side (II) of which is connected to the exhaust gas side (AGS). An electric machine (4) configured as a motor/generator is coupled to the combustion engine (1), wherein the electric machine (4) as a generator can be powered by the combustion engine (1), or can power the combustion engine (1) as a motor, wherein the compressor (3) can be powered directly by the electric machine (4) via a mechanical drive coupling (13).
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: August 2, 2016
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Claus-Oliver Schmalzing, Holger Frank, Philippe Gorse, Peter Riegger
  • Publication number: 20160186709
    Abstract: A method for the injector-specific diagnosis of a fuel injection device of an internal combustion engine, including the following steps: detecting a pressure progression in an individual accumulator of an injector in a time-resolved manner; evaluating the detected pressure progression; determining if there is a fault state of the injection device in the region of the injector on the basis of the detected and evaluated pressure progression; and identifying the fault state on the basis of the detected and evaluated pressure progression.
    Type: Application
    Filed: August 1, 2014
    Publication date: June 30, 2016
    Applicant: MTU Friedrichshafen GMBH
    Inventors: Michael WALDER, Andreas MEHR, Frank MLICKI, Alexander BERNHARD, Christian WOLF
  • Patent number: 9371773
    Abstract: A two-stage supercharger for an engine having a radial high-pressure turbine and an axial low-pressure turbine. The high-pressure turbine has a spiral housing with an exhaust-gas inlet connected to an exhaust line and via which exhaust-gas flows from the engine to the high-pressure turbine. A partial flow of the exhaust-gas flows past the high-pressure turbine in a bypass unit and is adjustable by a shut-off valve. The bypass unit includes a branch line and an annular duct housing integral with the spiral housing. The branch line branches off the exhaust-gas inlet at a point where the shut-off valve is arranged and issues into a duct of the annular duct housing. The partial flow flows through the branch line into the duct and an axially arranged annular gap into an exhaust-gas duct. The partial flow merges with a main exhaust-gas flow from the high-pressure turbine and flows into the low-pressure turbine.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: June 21, 2016
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Andreas Thoss, Thomas Zink