Patents Assigned to Nano-Tex, LLC
  • Publication number: 20030051295
    Abstract: Provided are compounds and methods for modifying a material to change properties of the material, as well as a variety of products obtained using the methods. In one embodiment, a material comprising one or more modifiable functional groups is reacted with an activated hydrophobic acyl group in the presence of a hindered base, thereby to covalently attach the hydrophobic acyl group to the modifiable functional groups on the material. The material which is modified may be, for example, a carbohydrate, and the modifiable functional groups on the material may be hydroxyls. For example, materials such as cellulose may be modified by reacting it with a acid chloride or acid anhydride including a hydrophobic acyl group, in the presence of a hindered base, such as tripentylamine, to attach the hydrophobic acyl groups to the hydroxyls on the cellulose, thereby to increase the hydrophobicity of the cellulose.
    Type: Application
    Filed: July 17, 2002
    Publication date: March 20, 2003
    Applicant: Nano- Tex, LLC
    Inventors: David S. Soane, David A. Offord
  • Patent number: 6516633
    Abstract: The present invention is directed to microemulsion techniques for rapidly preparing photochromic glass nanoparticles and to the photochromic glass nanoparticles so prepared. More particularly, the method of the invention comprises the combination of two microemulsions, one containing a water-soluble silver salt and a glass precursor and the other containing a halide salt and an initiator for glass formation, which process rapidly yields silver halide particles. This invention gives nanometer-sized silver halide particles embedded in glass, thus providing photochromic glass nanoparticles without further annealing, or at most mild annealing. These nanoparticles are valuable as added components to any macro-material that one might wish to have photochromic properties. The particles would impart photochromism while not affecting the physical properties of the material.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: February 11, 2003
    Assignee: Nano-Tex, LLC
    Inventors: Lael L. Erskine, Dan B. Millward, David S. Soane
  • Patent number: 6517933
    Abstract: The invention is directed to a hybrid polymer material or system that combines naturally occurring building blocks with synthetic building blocks. The sets of naturally occurring and synthetic building blocks are mixed and joined on a molecular or nanoscopic level to give homogeneous or microphase-separated morphologies to the resulting mixed polymer system. These hybrid polymers combine the comfort attributes of natural materials with the robustness and design properties of synthetic materials.
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: February 11, 2003
    Assignee: Nano-Tex, LLC
    Inventors: David S. Soane, Matthew R. Linford, David A. Offord, Dan B. Millward, William Ware, Jr.
  • Publication number: 20030008078
    Abstract: The present invention is directed to a water- and oil repellency-imparting preparation for fibrous and other substrates, the preparation comprising a fluorinated polymer and a tacking monomer, oligomer or polymer containing at least one anhydride functional group or a group capable of forming an anhydride functional group, optionally together with an anhydride-forming catalyst, such as sodium hypophosphite. The preparation can further optionally comprise other additives such as, for example, an extender; a softener; an antioxidant; a surfactant; and/or a plasticizer.
    Type: Application
    Filed: July 5, 2002
    Publication date: January 9, 2003
    Applicant: Nano-Tex, LLC
    Inventors: David S. Soane, David A. Offord
  • Publication number: 20030008931
    Abstract: The present invention is directed to thermo-expandable microspheres and to the expanded microballoons, microcellular foam or foamed composite material that results upon heating the microspheres. The thermo-expandable microsphere of the present invention is characterized by having a polymeric wall surrounding one or more pockets or particles of blowing agent or propellant within the microsphere. The polymeric wall may have reactive functional groups on its surface to give a fusible microsphere. When the microspheres are heated, they expand to form microballoons comprising polymeric shells surrounding one or more internal gaseous voids, and when the microspheres are expanded while in contact with each other, a microcellular foam may be formed. The foam consists of a plurality of microballoons fused together, optionally aided by functional groups present on the surface of the heated microspheres that act to crosslink the material.
    Type: Application
    Filed: September 5, 2002
    Publication date: January 9, 2003
    Applicant: Nano-Tex, LLC
    Inventors: David S. Soane, Michael R. Houston
  • Publication number: 20030008932
    Abstract: The present invention is directed to thermo-expandable microspheres and to the expanded microballoons, microcellular foam or foamed composite material that results upon heating the microspheres. The thermo-expandable microsphere of the present invention is characterized by having a polymeric wall surrounding one or more pockets or particles of blowing agent or propellant within the microsphere. The polymeric wall may have reactive functional groups on its surface to give a fusible microsphere. When the microspheres are heated, they expand to form microballoons comprising polymeric shells surrounding one or more internal gaseous voids, and when the microspheres are expanded while in contact with each other, a microcellular foam may be formed. The foam consists of a plurality of microballoons fused together, optionally aided by functional groups present on the surface of the heated microspheres that act to crosslink the material.
    Type: Application
    Filed: September 5, 2002
    Publication date: January 9, 2003
    Applicant: Nano-Tex, LLC
    Inventors: David S. Soane, Michael R. Houston
  • Patent number: 6497733
    Abstract: This invention is directed to treatments for dyed textile goods that will improve their fastness properties. More particularly, the invention is directed to certain fixatives that, when placed on the dyed textile, allow the dye to be permanently or substantially permanently affixed to the fabric. The dye-reactive fixative comprises a water-soluble or water-dispersible polymer or oligomer having reactive groups that react with a dye on a dyed web to affix the dye to the web.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: December 24, 2002
    Assignee: Nano-Tex, LLC
    Inventors: William Ware, Jr., David S. Soane, Dan B. Millward, Matthew R. Linford
  • Patent number: 6497732
    Abstract: The invention is directed to fiber-reactive polymeric dyes, which comprise a dye covalently bound to a carboxyl-containing polymer. By “fiber-reactive” is meant that the polymeric dye will form a chemical covalent bond with the fiber, textile, or web to be treated, via functional groups for binding or attachment to the fibers of the webs to be dyed. The invention also encompasses textile dye preparations comprising a solution or suspension of the fiber-reactive polymeric dye. The resulting polymeric dye preparations have improved colorfastness and retention on the textile or web fiber structure, even after a large number of washings. The textiles or webs treated with the fiber-reactive dye are also included in the invention.
    Type: Grant
    Filed: February 27, 2001
    Date of Patent: December 24, 2002
    Assignee: Nano-Tex, LLC
    Inventors: David S. Soane, Matthew R. Linford, Ryan Lau, Eric Green
  • Publication number: 20020189024
    Abstract: Provided are compounds and methods for modifying a material to change properties of the material, as well as a variety of products obtained using the methods. In one embodiment, a material comprising one or more modifiable functional groups is reacted with an activated hydrophobic acyl group in the presence of a hindered base, thereby to covalently attach the hydrophobic acyl group to the modifiable functional groups on the material. The material which is modified may be, for example, a carbohydrate, and the modifiable functional groups on the material may be hydroxyls. For example, materials such as cellulose may be modified by reacting it with an acid chloride or acid anhydride including a hydrophobic acyl group, in the presence of a hindered base, such as tripentylamine, to attach the hydrophobic acyl groups to the hydroxyls on the cellulose, thereby to increase the hydrophobicity of the cellulose.
    Type: Application
    Filed: July 5, 2002
    Publication date: December 19, 2002
    Applicant: Nano-Tex, LLC
    Inventors: David S. Soane, David A. Offord
  • Patent number: 6485530
    Abstract: Provided are compounds and methods for modifying a material to change properties of the material, as well as a variety of products obtained using the methods. In one embodiment, a material comprising one or more modifiable functional groups is reacted with an activated hydrophobic acyl group in the presence of a hindered base, thereby to covalently attach the hydrophobic acyl group to the modifiable functional groups on the material. The material which is modified may be, for example, a carbohydrate, and the modifiable functional groups on the material may be hydroxyls. For example, materials such as cellulose may be modified by reacting it with an acid chloride or acid anhydride including a hydrophobic acyl group, in the presence of a hindered base, such as tripentylamine, to attach the hydrophobic acyl groups to the hydroxyls on the cellulose, thereby to increase the hydrophobicity of the cellulose.
    Type: Grant
    Filed: June 1, 2000
    Date of Patent: November 26, 2002
    Assignee: Nano-Tex, LLC
    Inventors: David S. Soane, David A. Offord
  • Publication number: 20020160675
    Abstract: The present invention relates to textile treatment compositions for imparting desirable characteristics durably to textile fibers and fabrics, including softness, hydrophobicity, oleophobicity, surface lubricity, abrasion resistance, tear resistance, improved drape, and pilling resistance. More particularly, in one embodiment, the invention is directed to preparations that comprise a carboxylate-functionalized fluorinated polymer and a catalyst that is capable of forming reactive anhydride rings between carboxyl groups on the polymer. In another embodiment, the invention is directed to preparations comprising a polymeric softener having at least one anhydride functional group or at least one reactive group capable of forming an anhydride functional group, together with a catalyst for forming anhydrides from the reactive group or groups. In either embodiment, the resulting reactive anhydride rings bind to substrates, such as textiles and other webs, having free sulfhydryl, alcohol, or amine groups.
    Type: Application
    Filed: March 6, 2002
    Publication date: October 31, 2002
    Applicant: Nano-Tex, LLC
    Inventors: Matthew R. Linford, David S. Soane, David A. Offord, William Ware
  • Patent number: 6472476
    Abstract: The present invention is directed to a water- and oil repellency-imparting preparation for fibrous and other substrates, the preparation comprising a fluorinated polymer and a tacking monomer, oligomer or polymer containing at least one anhydride functional group or a group capable of forming an anhydride functional group, optionally together with an anhydride-forming catalyst, such as sodium hypophosphite. The preparation can further optionally comprise other additives such as, for example, an extender; a softener; an antioxidant; a surfactant; and/or a plasticizer.
    Type: Grant
    Filed: September 27, 2000
    Date of Patent: October 29, 2002
    Assignee: Nano-Tex, LLC
    Inventors: David S. Soane, David A. Offord
  • Publication number: 20020155771
    Abstract: Provided are compounds and methods for modifying a material to change properties of the material, as well as a variety of products obtained using the methods. The material which is modified may be, for example, a carbohydrate, and the modifiable functional groups on the material may be hydroxyls. Multifunctional molecules for use in modifying the surfaces of materials such as textile fibers, yams and other fabrics made of or, including cotton, wool and nylon, are provided. The multifunctional molecules can include hydrophobic regions and/or hydrophilic regions. The multifunctional molecules also may include binding functional groups that permit either non-covalent or covalent binding to the material being modified, thus permitting the multifunctional molecule to form a non-covalent or covalent coating on the material.
    Type: Application
    Filed: January 29, 2002
    Publication date: October 24, 2002
    Applicant: Nano-Tex, LLC
    Inventors: David S. Soane, David A. Offord
  • Publication number: 20020152560
    Abstract: Provided are compounds and methods for modifying a material to change properties of the material, as well as a variety of products obtained using the methods. In one embodiment, a material comprising one or more modifiable functional groups is reacted with an activated hydrophobic acyl group in the presence of a hindered base, thereby to covalently attach the hydrophobic acyl group to the modifiable functional groups on the material. The material which is modified may be, for example, a carbohydrate, and the modifiable functional groups on the material may be hydroxyls. For,example, materials such as cellulose may be modified by reacting it with an acid chloride or acid anhydride including a hydrophobic acyl group, in the presence of a hindered base, such as tripentylamine, to attach the hydrophobic acyl groups to the hydroxyls on the cellulose, thereby to increase the hydrophobicity of the cellulose.
    Type: Application
    Filed: June 6, 2002
    Publication date: October 24, 2002
    Applicant: Nano-Tex, LLC
    Inventors: David S. Soane, David A. Offord
  • Publication number: 20020120988
    Abstract: This invention is directed to treatment preparations useful for the permanent or substantially permanent treatment of textiles and other webs to provide tear and abrasion strength and softness to durable-press garments. The preparations comprise a softener (a “resin-reactive modifier”) durable to repeated laundering used in conjunction with a durable-press resin, to increase the comfort and lifetime of durable-press garments. The resulting durable-press/softener preparation is substantially permanently attached to the web and provides improved softness and tear/abrasion strength retention within and/or on the textile or web fiber structure while retaining the durable-press properties of the resin. This invention is further directed to the yarns, fibers, fabrics, textiles, finished goods, or nonwovens (encompassed herein under the terms “textiles” and “webs”) treated with the textile-reactive durable-press/softener preparation.
    Type: Application
    Filed: February 27, 2002
    Publication date: September 5, 2002
    Applicant: Nano-Tex, LLC
    Inventors: David S. Soane, William Ware, David A. Offord
  • Publication number: 20020122890
    Abstract: The present invention is directed to polymeric treatment preparations for textiles and other fibrous substrates that impart water and oil repellency to fibers, yarns, textiles, or other fibrous substrates. More particularly, this invention comprises an aqueous solution, emulsion or suspension of (a) a fluorinated polymer that contains reactive groups that can complex with metal atoms that have a formal charge of 2 or greater, and (b) one or more metal atoms that have a formal charge of 2 or greater. The invention is further directed to the process for treating fibrous substrates with textile preparations in one step that provide water/soil repellency that is durable to repeated cleanings and to abrasion. This invention is further directed to the yarns, fibers, fabrics, textiles, webs, finished goods, or nonwovens (encompassed herein under the terms “textiles” and “fibrous substrates”) treated with the textile-reactive water- and soil-resistant preparation of the invention.
    Type: Application
    Filed: March 6, 2002
    Publication date: September 5, 2002
    Applicant: Nano-Tex, LLC
    Inventors: Matthew R. Linford, David S. Soane, David A. Offord
  • Publication number: 20020071947
    Abstract: The present invention is directed to thermo-expandable fibers and to the expanded hollow fibers or microtubes, microcellular foam or foamed composite material that results upon heating the expandable fibers. The thermo-expandable fiber of the present invention is characterized by having a polymeric wall surrounding one or more pockets or particles of blowing agent or propellant within the fiber. The polymeric wall may have reactive functional groups on its surface to give a fusible fiber. When the expandable fibers are heated, they expand to form hollow fibers or microtubes comprising polymeric shells surrounding one or more internal gaseous voids, and when the fibers are expanded while in contact with each other, a microcellular foam may be formed. The foam consists of a plurality of hollow fibers fused together, optionally aided by functional groups present on the surface of the heated fibers that act to crosslink the material.
    Type: Application
    Filed: February 6, 2002
    Publication date: June 13, 2002
    Applicant: Nano-Tex, LLC
    Inventors: David S. Soane, Michael R. Houston
  • Patent number: 6387492
    Abstract: The present invention is directed to thermo-expandable fibers and to the expanded hollow fibers or microtubes, microcellular foam or foamed composite material that results upon heating the expandable fibers. The thermo-expandable fiber of the present invention is characterized by having a polymeric wall surrounding one or more pockets or particles of blowing agent or propellant within the fiber. The polymeric wall may have reactive functional groups on its surface to give a fusible fiber. When the expandable fibers are heated, they expand to form hollow fibers or microtubes comprising polymeric shells surrounding one or more internal gaseous voids, and when the fibers are expanded while in contact with each other, a microcellular foam may be formed. The foam consists of a plurality of hollow fibers fused together, optionally aided by functional groups present on the surface of the heated fibers that act to crosslink the material.
    Type: Grant
    Filed: April 23, 2001
    Date of Patent: May 14, 2002
    Assignee: Nano-Tex, LLC
    Inventors: David S. Soane, Michael R. Houston
  • Patent number: 6380336
    Abstract: The present invention is directed to a copolymer capable of forming a water- and oil-repellent agent that enables binding to textiles and other materials without the production of formaldehyde. The copolymer according to the present invention comprises a) a fluoroaliphatic radical-containing agent, (b) stearyl (meth)acrylate; (c) a chlorine-containing compound; and (d) a monomer selected from those that contain an anhydride functional group or are capable of forming an anhydride functional group. The present invention further provides a water and oil repellency-imparting composition for fibrous and other substrates, the composition comprising the above copolymer together with a catalyst, such as sodium hypophosphite, for forming anhydrides from the acid-containing monomers in the copolymer. The composition can further optionally comprise other additives such as, e.g., poly(acrylic acid); an extender; a softener; an antioxidant; a surfactant; and/or a plasticizer.
    Type: Grant
    Filed: April 10, 2000
    Date of Patent: April 30, 2002
    Assignee: Nano-Tex, LLC
    Inventors: David S. Soane, David A. Offord
  • Patent number: 6379753
    Abstract: Provided are compounds and methods for modifying a material to change properties of the material, as well as a variety of products obtained using the methods. The material which is modified may be, for example, a carbohydrate, and the modifiable functional groups on the material may be hydroxyls. Multifunctional molecules for use in modifying the surfaces of materials such as textile fibers, yarns and other fabrics made of or, including cotton, wool and nylon, are provided. The multifunctional molecules can include hydrophobic regions and/or hydrophilic regions. The multifunctional molecules also may include binding functional groups that permit either non-covalent or covalent binding to the material being modified, thus permitting the multifunctional molecule to form a non-covalent or covalent coating on the material.
    Type: Grant
    Filed: March 23, 1999
    Date of Patent: April 30, 2002
    Assignee: Nano-Tex, LLC
    Inventors: David S. Soane, David A. Offord