Patents Assigned to Nanometrics Incorporated
  • Patent number: 10488184
    Abstract: An interferometric metrology device characterizes a surface topography of a sample at different length scales by combining the interferometric data into blocks of different length scales or by filtering the interferometric data at different length scales and then determining statistical moments or surface properties of the surface topography at the different length scales. The interferometric metrology device determines a best focus position for a processing tool based on different length scales and/or based on weighting functions that are based on the structure-dependent focus budget and a variable local topography. Additionally, the topography data may be used by itself or combined with design data, design simulation depth-of-focus data and lithography scanner focus data to define regions of interest for additional characterization with a different metrology device.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: November 26, 2019
    Assignee: Nanometrics Incorporated
    Inventors: Kevin Eduard Heidrich, John Allgair, Jonathan Peak, Timothy Andrew Johnson
  • Patent number: 10451542
    Abstract: A purge system includes a purge gas distribution manifold that includes at least one port through which light beam from an optical metrology or inspection head is transmitted. The purge gas distribution manifold includes a bottom surface having one or more apertures through which purge gas is expelled. The bottom surface is held in close proximity to the top surface of the substrate and the apertures may be distributed over the bottom surface of the purge gas distribution manifold so that purge gas is uniformly distributed over the entirety of the top surface of the substrate at all measurement positions of the substrate with respect to the optical metrology or inspection head.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: October 22, 2019
    Assignee: Nanometrics Incorporated
    Inventors: Paul A. Doyle, Ryan Tsai, Morgan A. Crouch
  • Patent number: 10296554
    Abstract: Optical metrology is used to calibrate the plane-of-incidence (POI) azimuth error by determining and correcting an azimuth angle offset. The azimuth angle offset may be determined by measuring at least a partial Mueller matrix from a calibration grating on a sample held on a stage for a plurality of POI azimuth angles. An axis of symmetry is determined for a curve describing a value of a Mueller matrix element with respect to POI azimuth angle, for each desired wavelength and each desired Mueller matrix element. The axis of symmetry may then be used to determine the azimuth angle offset, e.g., by determining a mean, median or average of all, or a filtered subset, of the axes of symmetry. If desired, an axis of symmetry may be determined for data sets other than Mueller matrix elements, such as Fourier coefficients of measured signals.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: May 21, 2019
    Assignee: Nanometrics Incorporated
    Inventors: Pedro Vagos, Ye Feng, Daniel Thompson, Yan Zhang
  • Patent number: 10288408
    Abstract: A white light interferometric metrology device operates in the image plane and objective pupil plane. The interferometric metrology device extracts the electric field with complex parameters and that is a function of azimuth angle, angle of incidence and wavelength from interferometric data obtained from the pupil plane. Characteristics of the sample are determined using the electric field based on an electric field model of the azimuth angle, the angle of incidence and the wavelength that is specific for a zero diffraction order. A center of the pupil in the pupil plane may be determined based on a Fourier transform of the interferometric data at each new measurement and used to convert each pixel from the camera imaging the objective pupil plane into a unique set of angle of incidence and azimuth angle of light incident on the sample.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: May 14, 2019
    Assignee: Nanometrics Incorporated
    Inventors: Nigel P. Smith, George Andrew Antonelli
  • Patent number: 10274367
    Abstract: The effective spot size of a spectroscopic metrology device is reduced through deconvolution of a measurement spectra set acquired from a measurement target combined with a training spectra set obtained from a training target. The measurement spectra set may be obtained using sparse sampling of a grid scan of a measurement target. The training spectra set is obtained from a grid scan of a training target that is similar to the measurement target. The training spectra set and the measurement spectra set include spectra from different grid nodes. Deconvolution of the measurement spectra and the training spectra sets produces an estimated spectrum for the measurement target that is an estimate of a spectrum from the measurement target produced with incident light having an effective spot size that is smaller than the actual spot size. One or more characteristics of the measurement target may then be determined using the estimated spectrum.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: April 30, 2019
    Assignee: Nanometrics Incorporated
    Inventors: Amit Shachaf, Pedro Vagos, Michael Elad
  • Patent number: 10254110
    Abstract: An optical metrology device determines physical characteristics of at least one via in a sample, such as a through-silicon vias (TSV), using signal strength data for modeling of the bottom critical dimension (BCD) and/or for refinement of the data used to determine a physical characteristic of the via, such as BCD and/or depth. The metrology device obtains interferometric data and generates height and signal strength data, from which statistical properties may be obtained. The height and signal strength data for the via is refined by removing noise using the statistical property, and the BCD for the via may be determined using the refined height and signal strength data. In one implementation, a signal strength via map for a via is generated using signal strength data and is fit to a model to determine the BCD for the via.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: April 9, 2019
    Assignee: Nanometrics Incorporated
    Inventors: Ke Xiao, Brennan Peterson, Timothy A. Johnson
  • Patent number: 10107621
    Abstract: An image based overlay measurement is performed using an overlay target that includes shifted overlying gratings. The overlay target is imaged and an asymmetry is measured in the image of the overlaid gratings. The asymmetry is used to determine the overlay error. For each measurement direction, the overlay target may include two or more overlay measurement pads with different offsets between the top and bottom gratings. The measured asymmetries and offsets in the overlay measurement pads may be used to determine the overlay error, e.g., using self-calibration. The pitch and critical dimensions of the overlay target may be optimized to produce a greatest change of symmetry with overlay error for a numerical aperture and wavelength of light used by the image based metrology device.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: October 23, 2018
    Assignee: Nanometrics Incorporated
    Inventor: Nigel P. Smith
  • Patent number: 10082461
    Abstract: An integrated metrology module includes a chuck for holding a sample and positioning the sample with respect to an optical metrology device, a reference chip for the optical metrology device, the reference chip being movable to various positions with respect to the optical metrology device, and a reference chip purge device provides a flow of purge gas or air over the reference chip while the reference chip is in the various positions. The reference chip purge device may be static or movable with the reference chip.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: September 25, 2018
    Assignee: Nanometrics Incorporated
    Inventors: Andrew S. Klassen, Andrew J. Hazelton, Andrew H. Barada, Todd M. Petit, Chuan Sheng Tu
  • Patent number: 10061210
    Abstract: A metrology target is designed for monitoring variations in a multiple patterning process, such as a self-aligned doubled patterning (SADP) or self-aligned quadruple patterning (SAQP) process. The metrology target may include a plurality of sub-patterns. For example, the metrology target may be a three-dimensional (3D) target rather than a conventional two-dimensional line-space target design. The 3D target design includes multiple sub-patterns arranged with a pitch in a direction that is different than the pitch of the lines and trenches. The pitch of the sub-patterns is sufficient so that multiple sub-patterns are simultaneously within the field of measurement.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: August 28, 2018
    Assignee: Nanometrics Incorporated
    Inventors: Jiangtao Hu, Nicholas James Keller
  • Patent number: 9995689
    Abstract: Parameters of a sample are measured using a model-based approach that utilizes the difference between experimental spectra acquired from the sample and experimental anchor spectra acquired from one or more reference samples at the same optical metrology tool. Anchor parameters of the one or more reference samples are determined using one or more reference optical metrology tools. The anchor spectrum is obtained and the target spectrum for the sample is acquired using the optical metrology tool. A differential experimental spectrum is generated based on a difference between the target spectrum and the anchor spectrum. The parameters for the sample are determined using the differential experimental spectrum and the anchor parameters, e.g., by comparing the differential experimental spectrum to a differential simulated spectrum, which is based on a difference between spectra simulated using a model having the parameters and a spectrum simulated using a model having the anchor parameters.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: June 12, 2018
    Assignee: Nanometrics Incorporated
    Inventor: Pedro Vagos
  • Patent number: 9958327
    Abstract: The effective spot size of a spectroscopic metrology device is reduced through deconvolution of a measurement spectra set acquired from a measurement target combined with a training spectra set obtained from a training target. The measurement spectra set may be obtained using sparse sampling of a grid scan of a measurement target. The training spectra set is obtained from a grid scan of a training target that is similar to the measurement target. The training spectra set and the measurement spectra set include spectra from different grid nodes. Deconvolution of the measurement spectra and the training spectra sets produces an estimated spectrum for the measurement target that is an estimate of a spectrum from the measurement target produced with incident light having an effective spot size that is smaller than the actual spot size. One or more characteristics of the measurement target may then be determined using the estimated spectrum.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: May 1, 2018
    Assignee: Nanometrics Incorporated
    Inventors: Amit Shachaf, Pedro Vagos, Michael Elad
  • Patent number: 9958673
    Abstract: A cover plate or lens for an optical metrology device that is positioned under a wafer during measurement is protected with a purge device. The purge device may include a ring that extends around a periphery of the cover plate or lens. The ring includes a plurality of apertures through which a purge gas or air is expelled over the surface of the cover plate or lens. Additionally or alternatively, one or more heating elements may be provided that extend around the periphery of the cover plate or lens. The heating elements heat the cover plate above a dewpoint temperature of contaminant vapor. A heat sensor may be used to monitor the temperature of the cover plate to control the heating elements and/or to compensate for optical changes of the cover plate caused by heating during measurement of a wafer.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: May 1, 2018
    Assignee: Nanometrics Incorporated
    Inventors: Jason Robert Shields, Nir Ben Moshe, Andrew J. Hazelton
  • Patent number: 9903806
    Abstract: An optical metrology device, such as an ellipsometer, includes a focusing system that adjusts the focal position of the metrology device in real time so that focus may be maintained during movement of the measurement locations on the sample, e.g., using closed loop control. A filtered focus signal may be used to adjust the focal position while moving to a measurement location. Additionally, the focus signal may be coarsely filtered and finely filtered, where a coarse filtered focus signal is used to adjust the focal position while moving to a measurement location and a fine filtered focus signal is used to adjust the focal position when at the measurement location. An open loop control may be used in which once at the measurement location, a filtered focus signal is used to adjust the focal position when the filtered focus signal has no offset with respect to the focus signal.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: February 27, 2018
    Assignee: Nanometrics Incorporated
    Inventor: Amit Shachaf
  • Patent number: 9846122
    Abstract: An optical metrology device is capable of detection of any combination of photoluminescence light, specular reflection of broadband light, and scattered light from a line across the width of a sample. The metrology device includes a first light source that produces a first illumination line on the sample. A scanning system may be used to scan an illumination spot across the sample to form the illumination line. A detector collects the photoluminescence light emitted along the illumination line. Additionally, a broadband illumination source may be used to produce a second illumination line on the sample, where the detector collects the broadband illumination reflected along the second illumination line. A signal collecting optic may collect the photoluminescence light and broadband light and focus it into a line, which is received by an optical conduit. The output end of the optical conduit has a shape that matches the entrance of the detector.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: December 19, 2017
    Assignee: Nanometrics Incorporated
    Inventors: Andrzej Buczkowski, Mikhail Sluch
  • Patent number: 9824176
    Abstract: A measurement target for a semiconductor device is designed. The semiconductor device includes a structure to be measured that has a spectrum response that is comparable to or below system noise level for an optical critical dimension measurement device to be used to measure the structure. The measurement target is designed by obtaining a process window and design rules for the semiconductor device and determining prospective pitches through modeling to identify pitches that produce a spectrum response from the structures that is at least 10 times greater than a system noise level for the optical critical dimension measurement device. A resonance window for each prospective pitch is determined and robustness of the resonance window is determined through modeling. Pitches of the array are selected based on the prospective pitches, resonance windows, and robustness. The target design may accordingly be produced and used to generate a measurement target.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: November 21, 2017
    Assignee: Nanometrics Incorporated
    Inventors: Jiangtao Hu, Bingqing Li, Zhuan Liu
  • Patent number: 9547244
    Abstract: A plurality of overlay errors in a structure is determined using a target that includes a plurality of diffraction based overlay pads. Each diffraction based overlay pad has the same number of periodic patterns as the structure under test. Additionally, each diffraction based overlay pad includes a programmed shift between each pair of periodic patterns. The pads are illuminated and the resulting light is detected and used to simultaneously determine the plurality of overlay errors in the structure based on the programmed shifts. The overlay errors may be determined using a subset of elements of the Mueller matrix or by using the resulting spectra from the pads.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: January 17, 2017
    Assignee: Nanometrics Incorporated
    Inventor: Jie Li
  • Patent number: 9243999
    Abstract: An ellipsometer includes an integrated focusing system with a beam splitter between the sample and the ellipsometer detector. The beam splitter provides a portion of the radiation to a lens system that magnifies any deviation from a best focus position by at least 2×. The focusing system includes a 2D sensor, where the spot of light focused on the sensor is 50 percent or smaller than the sensor. The focusing system may further include a compensator to correct optical aberrations caused by the beam splitter. A processor receives an image signal and finds the location of the spot from which focus error can be determined and used to correct the focal position of the ellipsometer. The processor compensates for movement of the spot caused by rotating optics. Additionally, a proportional-integral-derivative controller may be used to control exposure time and/or gain of the camera.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: January 26, 2016
    Assignee: Nanometrics Incorporated
    Inventors: Barry J. Blasenheim, Amit Shachaf
  • Patent number: 9239523
    Abstract: An empirical diffraction based overlay (eDBO) measurement of an overlay error is produced using diffraction signals from a plurality of diffraction based alignment pads from an alignment target. The linearity of the overlay error is tested using the same diffraction signals or a different set of diffraction signals from diffraction based alignment pads. Wavelengths that do not have a linear response to overlay error may be excluded from the measurement error.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: January 19, 2016
    Assignee: Nanometrics Incorporated
    Inventors: Jie Li, Zhuan Liu, Silvio J. Rabello, Nigel P. Smith
  • Patent number: 9182351
    Abstract: An optical metrology device is capable of detection of any combination of photoluminescence light, specular reflection of broadband light, and scattered light from a line across the width of a sample. The metrology device includes a first light source that produces a first illumination line on the sample. A scanning system may be used to scan an illumination spot across the sample to form the illumination line. A detector spectrally images the photoluminescence light emitted along the illumination line. Additionally, a broadband illumination source may be used to produce a second illumination line on the sample, where the detector spectrally images specular reflection of the broadband illumination along the second illumination line. The detector may also image scattered light from the first illumination line. The illumination lines may be scanned across the sample so that all positions on the sample may be measured.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: November 10, 2015
    Assignee: Nanometrics Incorporated
    Inventor: Andrzej Buczkowski
  • Patent number: 9115987
    Abstract: An optical metrology device simultaneously detects light with multiple angles of incidence (AOI) and/or multiple azimuth angles to determine at least one parameter of a sample. The metrology device focuses light on the sample using an optical system with a large numerical aperture, e.g., 0.2 to 0.9. Multiple channels having multiple AOIs and/or multiple azimuth angles are selected simultaneously by passing light reflected from the sample through a plurality of pupils in a pupil plate. Beamlets produced by the plurality of pupils are detected, e.g., with one or more spectrophotometers, to produce data for the multiple AOIs and/or multiple azimuth angles. The data for multiple AOI and/or multiple azimuth angles may then be processed to determine at least one parameter of the sample, such as profile parameters or overlay error.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: August 25, 2015
    Assignee: Nanometrics Incorporated
    Inventors: Zhuan Liu, Shifang Li