Patents Assigned to Nanosolar, Inc.
  • Patent number: 8414961
    Abstract: Methods and devices are provided for improved photovoltaic devices. In one embodiment, a method is provided for forming a photovoltaic device. The method comprises processing a precursor layer in one or more steps to form a photovoltaic absorber layer; depositing a smoothing layer to fill gaps and depression in the absorber layer to reduce a roughness of the absorber layer; adding an insulating layer over the smooth layer; and forming a web-like layer of conductive material over the insulating layer. By way of nonlimiting example, the web-like layer of conductive material comprises a plurality of carbon nanotubes. In some embodiments, the absorber layer is a group IB-IIIA-VIA absorber layer.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: April 9, 2013
    Assignee: Nanosolar, Inc.
    Inventors: Matthew R. Robinson, Chris Eberspacher
  • Patent number: 8409455
    Abstract: Methods and devices for high-throughput manufacturing of a solar cell with a diode is provided.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: April 2, 2013
    Assignee: Nanosolar, Inc.
    Inventor: Wolf Oetting
  • Publication number: 20130068288
    Abstract: Methods and devices are provided for improved sensor systems. In one embodiment of the present invention, sensor system is provided that includes a sensor and sensor electronics integrated into the same ground plane.
    Type: Application
    Filed: December 11, 2009
    Publication date: March 21, 2013
    Applicant: Nanosolar, Inc.
    Inventors: Robert Stancel, Louis Basel
  • Publication number: 20130059410
    Abstract: An ink for forming CIGS photovoltaic cell active layers is disclosed along with methods for making the ink, methods for making the active layers and a solar cell made with the active layer. The ink contains a mixture of nanoparticles of elements of groups IB, IIIA and (optionally) VIA. The particles are in a desired particle size range of between about 1 nm and about 500 nm in diameter, where a majority of the mass of the particles comprises particles ranging in size from no more than about 40% above or below an average particle size or, if the average particle size is less than about 5 nanometers, from no more than about 2 nanometers above or below the average particle size. The use of such ink avoids the need to expose the material to an H2Se gas during the construction of a photovoltaic cell and allows more uniform melting during film annealing, more uniform intermixing of nanoparticles, and allows higher quality absorber films to be formed.
    Type: Application
    Filed: November 3, 2012
    Publication date: March 7, 2013
    Applicant: Nanosolar, Inc.
    Inventor: Nanosolar, Inc.
  • Publication number: 20130040420
    Abstract: A precursor layer for a photovoltaic absorber layer on a substrate is formed, where the precursor layer comprises group IB and IIIA elements. The precursor layer is heated in an elongate furnace, where the heating includes depositing a group VIA-based material on the precursor layer. The substrate is placed on a support and advanced through the furnace. The support has an anti-stiction surface of a material including at least one of: silicon carbide, glass, spin-on-glass (SOG), diamond-like carbon (DLC), silicon carbide (SiC), a hydrogenated diamond coating, pyrolytic carbon and a fluoropolymer.
    Type: Application
    Filed: October 16, 2012
    Publication date: February 14, 2013
    Applicant: NANOSOLAR, INC.
    Inventor: NANOSOLAR, INC.
  • Patent number: 8372734
    Abstract: Methods and devices are provided for transforming non-planar or planar precursor materials in an appropriate vehicle under the appropriate conditions to create dispersions of planar particles with stoichiometric ratios of elements equal to that of the feedstock or precursor materials, even after selective forces settling. In particular, planar particles disperse more easily, form much denser coatings (or form coatings with more interparticle contact area), and anneal into fused, dense films at a lower temperature and/or time than their counterparts made from spherical nanoparticles. These planar particles may be nanoflakes that have a high aspect ratio. The resulting dense films formed from nanoflakes are particularly useful in forming photovoltaic devices. In one embodiment, at least one set of the particles in the ink may be inter-metallic flake particles (microflake or nanoflake) containing at least one group IB-IIIA inter-metallic alloy phase.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: February 12, 2013
    Assignee: Nanosolar, Inc
    Inventors: Jeroen K. J. Van Duren, Matthew R. Robinson, Brian M. Sager
  • Patent number: 8372685
    Abstract: Methods and devices are provided for forming thin-films from solid group IIIA-based particles. In one embodiment, a method is provided for bandgap grading in a thin-film device using such particles. The method may be comprised of providing a bandgap grading material comprising of an alloy having: a) a IIIA material and b) a group IA-based material, wherein the alloy has a higher melting temperature than a melting temperature of the IIIA material in elemental form. A precursor material may be deposited on a substrate to form a precursor layer. The precursor material comprising group IB, IIIA, and/or VIA based particles. The bandgap grading material of the alloy may be deposited after depositing the precursor material. The alloy in the grading material may react after the precursor layer has begun to sinter and thus maintains a higher concentration of IIIA material in a portion of the compound film that forms above a portion that sinters first.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: February 12, 2013
    Assignee: Nanosolar, Inc.
    Inventors: Matthew R. Robinson, Chris Eberspacher, Jeroen K. J. Van Duren
  • Publication number: 20130032851
    Abstract: Optoelectronic device modules, arrays optoelectronic device modules and methods for fabricating optoelectronic device modules are disclosed. The device modules are made using a starting substrate having an insulator layer sandwiched between a bottom electrode made of a flexible bulk conductor and a conductive back plane. An active layer is disposed between the bottom electrode and a transparent conducting layer. One or more electrical contacts between the transparent conducting layer and the back plane are formed through the transparent conducting layer, the active layer, the flexible bulk conductor and the insulating layer. The electrical contacts are electrically isolated from the active layer, the bottom electrode and the insulating layer.
    Type: Application
    Filed: October 12, 2012
    Publication date: February 7, 2013
    Applicant: NANOSOLAR, INC.
    Inventor: NANOSOLAR, INC.
  • Publication number: 20130034932
    Abstract: Methods and devices are provided for forming thin-films from solid group IIIA-based particles. In one embodiment of the present invention, a method is described comprising of providing a first material comprising an alloy of a) a group IIIA-based material and b) at least one other material. The material may be included in an amount sufficient so that no liquid phase of the alloy is present within the first material in a temperature range between room temperature and a deposition or pre-deposition temperature higher than room temperature, wherein the group IIIA-based material is otherwise liquid in that temperature range. The other material may be a group IA material. A precursor material may be formulated comprising a) particles of the first material and b) particles containing at least one element from the group consisting of: group IB, IIIA, VIA element, alloys containing any of the foregoing elements, or combinations thereof. The temperature range described above may be between about 20° C.
    Type: Application
    Filed: August 10, 2012
    Publication date: February 7, 2013
    Applicant: NANOSOLAR, INC.
    Inventors: Matthew R. Robinson, Chris Eberspacher, Jeroen K.J. Van Duren
  • Publication number: 20130032192
    Abstract: Methods and devices are provided for improved large-scale solar installations. In one embodiment, a junction-box free photovoltaic module is used comprising of a plurality of photovoltaic cells and a module support layer providing a mounting surface for the cells. The module has a first electrical lead extending outward from one of the photovoltaic cells, the lead coupled to an adjacent module without passing the lead through a central junction box. The module may have a second electrical lead extending outward from one of the photovoltaic cells, the lead coupled to another adjacent module without passing the lead through a central junction box. Without junction boxes, the module may use connectors along the edges of the modules which can substantially reduce the amount of wire or connector ribbon used for such connections.
    Type: Application
    Filed: October 11, 2012
    Publication date: February 7, 2013
    Applicant: Nanosolar, Inc.
    Inventor: Nanosolar, Inc.
  • Patent number: 8366973
    Abstract: An ink for forming CIGS photovoltaic cell active layers is disclosed along with methods for making the ink, methods for making the active layers and a solar cell made with the active layer. The ink contains a mixture of nanoparticles of elements of groups IB, IIIA and (optionally) VIA. The particles are in a desired particle size range of between about 1 nm and about 500 nm in diameter, where a majority of the mass of the particles comprises particles ranging in size from no more than about 40% above or below an average particle size or, if the average particle size is less than about 5 nanometers, from no more than about 2 nanometers above or below the average particle size. The use of such ink avoids the need to expose the material to an H2Se gas during the construction of a photovoltaic cell and allows more uniform melting during film annealing, more uniform intermixing of nanoparticles, and allows higher quality absorber films to be formed.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: February 5, 2013
    Assignee: Nanosolar, Inc
    Inventors: Dong Yu, Jacqueline Fidanza, Brian M. Sager
  • Publication number: 20130025532
    Abstract: An absorber layer of a photovoltaic device may be formed on an aluminum or metallized polymer foil substrate. A nascent absorber layer containing one or more elements of group IB and one or more elements of group IIIA is formed on the substrate. The nascent absorber layer and/or substrate is then rapidly heated from an ambient temperature to an average plateau temperature range of between about 200° C. and about 600° C. and maintained in the average plateau temperature range 1 to 30 minutes after which the temperature is reduced.
    Type: Application
    Filed: October 4, 2012
    Publication date: January 31, 2013
    Applicant: NANOSOLAR, INC.
    Inventor: NANOSOLAR, INC.
  • Publication number: 20130020557
    Abstract: An optoelectronic device is disclosed. The optoelectronic device comprises an active layer and a conducting network layer which comprises a plurality of interconnected metal nanowires and a layer of transparent conducting material in electrical contact with the active layer. The conducting network layer of interconnected metal nanowires is disposed on the layer of transparent conducting material. Above the active layer, light passes through the transparent conducting material to reach the active layer. Each of the nanowires has an elongate, non-spherical configuration and aggregate nanowire length oriented to extend laterally through a plane of the conducting network layer. This provides lengthwise contact of the nanowires to the transparent conducting material.
    Type: Application
    Filed: September 26, 2012
    Publication date: January 24, 2013
    Applicant: NANOSOLAR, INC.
    Inventor: Nanosolar, Inc.
  • Publication number: 20130008482
    Abstract: Methods and devices are provided for improved large-scale solar installations for a photovoltaic module with a plurality of photovoltaic cells positioned between a transparent module layer and a backside module layer. The module includes a first electrical lead extending outward from an edge of the module from between the transparent module layer and the backside module layer.
    Type: Application
    Filed: August 18, 2012
    Publication date: January 10, 2013
    Applicant: NANOSOLAR, INC.
    Inventors: Robert Stancel, Jeremy H. Scholz, Paul M. Adriani
  • Publication number: 20120329195
    Abstract: An absorber layer of a photovoltaic device may be formed on an aluminum or metallized polymer foil substrate. A nascent absorber layer containing one or more elements of group IB and one or more elements of group IIIA is formed on the substrate. The nascent absorber layer and/or substrate is then rapidly heated from an ambient temperature to an average plateau temperature range of between about 200° C. and about 600° C. and maintained in the average plateau temperature range 2 to 30 minutes after which the temperature is reduced.
    Type: Application
    Filed: August 31, 2012
    Publication date: December 27, 2012
    Applicant: NANOSOLAR, INC.
    Inventors: Craig Leidholm, Brent Bollman
  • Publication number: 20120322197
    Abstract: Methods and devices are provided for forming thin-films from solid group IIIA-based particles. In one embodiment, a process for forming solid particles is provided. The method includes providing a first suspension of solid and/or liquid particles containing at least one group IIIA element. A material may be added to substantially increase the melting point of at least one set of group IIIA-containing particles in the suspension into higher-melting solid particles comprising an alloy of the group IIIA element and at least a part of the added material. The suspension may be deposited onto a substrate to form a precursor layer on the substrate and the precursor layer is reacted in a suitable atmosphere to form a film.
    Type: Application
    Filed: May 12, 2012
    Publication date: December 20, 2012
    Applicant: NANOSOLAR, INC.
    Inventors: Matthew R. Robinson, Chris Eberspacher, Jeroen K. J. Van Duren
  • Publication number: 20120315722
    Abstract: Methods and devices are provided for transforming non-planar or planar precursor materials in an appropriate vehicle under the appropriate conditions to create dispersions of planar particles with stoichiometric ratios of elements equal to that of the feedstock or precursor materials, even after selective forces settling. In particular, planar particles disperse more easily, form much denser coatings (or form coatings with more interparticle contact area), and anneal into fused, dense films at a lower temperature and/or time than their counterparts made from spherical nanoparticles. These planar particles may be nanoflakes that have a high aspect ratio. The resulting dense films formed from nanoflakes are particularly useful in forming photovoltaic devices.
    Type: Application
    Filed: August 18, 2012
    Publication date: December 13, 2012
    Applicant: Nanosolar, Inc.
    Inventors: Matthew R. Robinson, Jeroen K. J. Van Duren, Craig Leidholm
  • Publication number: 20120313200
    Abstract: Methods and devices are provided for forming multi-nary semiconductor. In one embodiment, a method is provided comprising of depositing a precursor material onto a substrate, wherein the precursor material may include or may be used with an additive to minimize concentration of group IIIA material such as Ga in the back portion of the final semiconductor layer. The additive may be a non-copper Group IB additive in elemental or alloy form. Some embodiments may use both selenium and sulfur, forming a senary or higher semiconductor alloy. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: June 26, 2012
    Publication date: December 13, 2012
    Applicant: Nanosolar, Inc.
    Inventors: David B. Jackrel, Katherine Dickey, Kristin Pollock, Jacob Woodruff, Peter Stone, Gregory Brown
  • Patent number: 8329501
    Abstract: Methods and devices are provided for high-throughput printing of semiconductor precursor layer from microflake particles. In one embodiment, the method comprises of transforming non-planar or planar precursor materials in an appropriate vehicle under the appropriate conditions to create dispersions of planar particles with stoichiometric ratios of elements equal to that of the feedstock or precursor materials, even after settling. In particular, planar particles disperse more easily, form much denser coatings (or form coatings with more interparticle contact area), and anneal into fused, dense films at a lower temperature and/or time than their counterparts made from spherical nanoparticles. These planar particles may be microflakes that have a high aspect ratio. The resulting dense film formed from microflakes is particularly useful in forming photovoltaic devices.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: December 11, 2012
    Assignee: Nanosolar, Inc.
    Inventors: Matthew R. Robinson, Brian M. Sager, Jeoren K. J. Van Duren
  • Publication number: 20120295022
    Abstract: Methods and devices for high-throughput printing of a precursor material for forming a film of a group IB-IIIA-chalcogenide compound are disclosed. In one embodiment, the method comprises forming a precursor layer on a substrate, wherein the precursor layer comprises one or more discrete layers. The layers may include at least a first layer containing one or more group IB elements and two or more different group IIIA elements and at least a second layer containing elemental chalcogen particles. The precursor layer may be heated to a temperature sufficient to melt the chalcogen particles and to react the chalcogen particles with the one or more group IB elements and group IIIA elements in the precursor layer to form a film of a group IB-IIIA-chalcogenide compound.
    Type: Application
    Filed: May 29, 2012
    Publication date: November 22, 2012
    Applicant: NANOSOLAR, INC.
    Inventors: Jeroen K.J. Van Duren, Matthew R. Robinson, Craig Leidholm