Patents Assigned to Nippon Nuclear Fuel Development Co., Ltd.
  • Patent number: 6640635
    Abstract: Electromagnetic acoustic resonance method by using EMAT is used for determining hydrogen concentration of radioactive metallic object. In one preferred embodiment, resonance frequencies fr, fr are measured with the EMAT, where where fr is a resonance frequency when a direction of an amplitude of a transverse ultrasonic wave generated by the EMAT is the same as the rolling direction of the metallic object of rolled material, and ft is a resonance frequency when a direction of the amplitude of the transverse ultrasonic wave is perpendicular to the rolling direction. A value R is calculated by using: R=(fr−ft)/{(fr+ft)/2}. The hydrogen concentration of the metallic object is calculated on the basis of the experimentally determined relation between the value R and hydrogen concentration.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: November 4, 2003
    Assignees: Kabushiki Kaisha Toshiba, Hitachi Ltd., Nippon Nuclear Fuel Development Co., Ltd.
    Inventor: Masafumi Nakatsuka
  • Patent number: 5429775
    Abstract: The present invention provides improved nuclear fuel pellets having high thermal conductivity for use in an LWR. This can be achieved by creating a continuous deposition phase of high-thermal conductivity substances in the grain boundaries in the pellets. As a result, the temperature in the center of the fuel rod can be significantly reduced, and the discharge amount of gases generated on the nuclear fission can be efficiently reduced.The present invention also provides a method of manufacturing the above-described nuclear fuel pellets.
    Type: Grant
    Filed: August 20, 1992
    Date of Patent: July 4, 1995
    Assignee: Nippon Nuclear Fuel Development Co., Ltd.
    Inventors: Mutsumi Hirai, Shinji Ishimoto, Kenichi Ito
  • Patent number: 5362426
    Abstract: The present invention provides improved nuclear fuel pellets having high thermal conductivity for use in an LWR. This can be achieved by creating a continuous deposition phase of high-thermal conductivity substances in the grain boundaries in the pellets. As a result, the temperature in the center of the fuel rod can be significantly reduced, and the discharge amount of gases generated on the nuclear fission can be efficiently reduced.The present invention also provides a method of manufacturing the above-described nuclear fuel pellets.
    Type: Grant
    Filed: June 2, 1993
    Date of Patent: November 8, 1994
    Assignee: Nippon Nuclear Fuel Development Co., Ltd.
    Inventors: Mutsumi Hirai, Shinji Ishimoto, Kenichi Ito
  • Patent number: 5257298
    Abstract: This invention provides nuclear fuel pellets including fission substance of UO.sub.2 or UO.sub.2 having Gd.sub.2 O.sub.3 added thereto, the pellets comprising a satisfactory solid-solution state (homogeneous state), large grain diameters, and a second precipitation phase deposited in grain boundaries, and still having a sufficiently high density. This invention also provides a method of manufacturing the above-described nuclear fuel pellets.The nuclear fuel pellets of this invention comprise UO.sub.2 or (U, Gd) O.sub.2 grains and an aluminosilicate precipitation phase, the precipitation phase being a glass state or a crystalline state, the grains having an average grain diameter of about 20 .mu.m through about 60 .mu.m, the aluminosilicate precipitation phase having a composition including SiO.sub.2 of about 40 wt % through about 80 wt % and Al.sub.2 O.sub.
    Type: Grant
    Filed: March 4, 1992
    Date of Patent: October 26, 1993
    Assignee: Nippon Nuclear Fuel Development Co., Ltd.
    Inventors: Ryoichi Yuda, Kenichi Ito, Hiroshi Masuda
  • Patent number: 5255299
    Abstract: The present invention provides improved nuclear fuel pellets having high thermal conductivity for use in an LWR. This can be achieved by creating a continuous deposition phase of high-thermal conductivity substances in the grain boundaries in the pellets. As a result, the temperature in the center of the fuel rod can be significantly reduced, and the discharge amount of gases generated on the nuclear fission can be efficiently reduced.The present invention also provides a method of manufacturing the above-described nuclear fuel pellets.
    Type: Grant
    Filed: June 9, 1992
    Date of Patent: October 19, 1993
    Assignee: Nippon Nuclear Fuel Development Co., Ltd.
    Inventors: Mutsumi Hirai, Shinji Ishimoto, Kenichi Ito
  • Patent number: 5180527
    Abstract: The present invention provides improved nuclear fuel pellets having high thermal conductivity for use in an LWR. This can be achieved by creating a continuous deposition phase of high-thermal conductivity substances in the grain boundaries in the pellets. As a result, the temperature in the center of the fuel rod can be significantly reduced, and the discharge amount of gases generated on the nuclear fission can be efficiently reduced.The present invention also provides a method of manufacturing the above-described nuclear fuel pellets.
    Type: Grant
    Filed: March 25, 1991
    Date of Patent: January 19, 1993
    Assignee: Nippon Nuclear Fuel Development Co., Ltd.
    Inventors: Mutsumi Hirai, Shinji Ishimoto, Kenichi Ito
  • Patent number: 4906927
    Abstract: An eddy current flaw detecting apparatus comprises a pair of detection coils each connected in adjoining arms of flaw detecting bridge circuit, the planes containing the pair of coils are arranged in parallel and inclined to the axis of a fuel clad pipe being examined at an inclination angle between 75.degree. and 85.degree. and an arrangement for rotating the fuel clad pipe relative to the pair of detection coils, when a flaw is detected while moving the fuel clad pipe relative to the pair of detection coils, to obtain a characteristic curve between a flaw signal output and turning angle in order to determine direction of the flaw, such as circumferential and axial, in comparison with characteristic curves between a flaw signal output and turning angle obtained in advance with respect to standard flaw testing pieces.
    Type: Grant
    Filed: October 25, 1988
    Date of Patent: March 6, 1990
    Assignee: Nippon Nuclear Fuel Development Co., Ltd.
    Inventors: Megumu Urata, Kazushige Tsukui