Patents Assigned to Northeastern University
  • Patent number: 11972856
    Abstract: Aspects of the present disclosure describe systems and methods for predicting an intra-aortic pressure of a patient receiving hemodynamic support from a transvalvular micro-axial heart pump. In some implementations, an intra-aortic pressure time series is derived from measurements of a pressure sensor of the transvalvular micro-axial heart pump and a motor speed time series is derived from a measured back electromotive force of a motor of the transvalvular micro-axial heart pump. Furthermore, in some implementations, machine learning algorithms, such as deep learning, are applied to the intra-aortic pressure and motor speed time series to accurately predict an intra-aortic pressure of the patient. In some implementations, the prediction is short-term (e.g., approximately 5 minutes in advance).
    Type: Grant
    Filed: January 13, 2023
    Date of Patent: April 30, 2024
    Assignees: Abiomed, Inc., Northeastern University
    Inventors: Ahmad El Katerji, Erik Kroeker, Elise Jortberg, Rose Yu, Rui Wang
  • Patent number: 11969713
    Abstract: Functionalized catalysts for use in a hydrogen evolution reaction (HER) contain nanoparticles containing a transition metal enveloped in layers of graphene, which renders the nanoparticles resistant to passivation while maintaining an optimal ratio of transition metal and transition metal oxide in the nanoparticles. The catalysts can be utilized with anionic exchange polymer membranes for hydrogen production by alkaline water electrolysis.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: April 30, 2024
    Assignee: Northeastern University
    Inventors: Sanjeev Mukerjee, Robert Allen, Huong Thi Thanh Doan, Ian Kendrick
  • Patent number: 11969266
    Abstract: A deep learning medical device implantable in a body is provided. The device includes a processing and communication unit and a sensing and actuation unit. The processing and communication unit includes a deep learning module including a neural network trained to process the input samples, received from the sensing and actuation unit, through a plurality of layers to classify physiological parameters and provide classification results. A communication interface in communication with the deep learning module receives the classification results for ultrasonic transmission through biological tissue. Methods of sensing and classifying physiological parameters of a body and methods of embedding deep learning into an implantable medical device are also provided.
    Type: Grant
    Filed: February 16, 2021
    Date of Patent: April 30, 2024
    Assignee: Northeastern University
    Inventors: Daniel Uvaydov, Raffaele Guida, Francesco Restuccia, Tommaso Melodia
  • Patent number: 11968905
    Abstract: A sputter growth method for a crystalline ordered topological insulator (TI) material on an amorphous substrate, which is possible to use at a CMOS-compatible temperature. The process can be integrated into CMOS fabrication processes for Spin Orbit Torque (SOT) devices. The resulting material can include a thin film crystalline ordered TI layer, sputter deposited on an amorphous substrate, and an adjacent ferromagnetic (FM) layer in which spin-orbit torque is provided by the TI layer, for example to cause switching in magnetic states in a magnetic memory device.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: April 23, 2024
    Assignee: NORTHEASTERN UNIVERSITY
    Inventors: Nian-Xiang Sun, Nirjhar Bhattacharjee
  • Patent number: 11964956
    Abstract: Disclosed are compounds and compositions that modulate cannabinoid receptors, methods of modulating cannabinoid receptors, and methods of treating various disorders related to the modulation of cannabinoid receptors. This disclosure is directed to methods of treating cannabinoid dependence, neuropathy, inflammation, glaucoma, a neurodegenerative disorder, a motor function disorder, a gastrointestinal disorder, hypothermia, emesis, loss of appetite, or anorexia associated with AIDS.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: April 23, 2024
    Assignee: Northeastern University
    Inventors: Alexandros Makriyannis, Spyridon P. Nikas, Ganeshsingh A. Thakur, Rishi Sharma, Shashank Kulkarni
  • Patent number: 11965860
    Abstract: Provided is a test system for hard rock breaking by a microwave intelligent loading based on true triaxial stress, including: a true triaxial stress loading device consisting of a loading frame and a rock sample moving structure; a microwave-induced hard rock breaking device consisting of an excitation cavity, a rectangular waveguide, a magnetron, a thermocouple, a circulator, a cold water circulation device, a flowmeter, a power meter, an automatic impedance tuner, a coupler, a microwave heater and a shielding cavity; and a dynamic rock response monitoring and intelligent microwave parameter control system consisting of a CCD industrial camera, a temperature acquisition device and an anti-electromagnetic high-temperature resistant acoustic wave-acoustic emission integrated sensor.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: April 23, 2024
    Assignee: NORTHEASTERN UNIVERSITY
    Inventors: Xiating Feng, Jiuyu Zhang, Feng Lin, Shiping Li, Xiangxin Su, Tianyang Tong
  • Patent number: 11962463
    Abstract: A framework for joint computation, caching, and request forwarding in data-centric computing-based networks comprises a virtual control plane, which operates on request counters for computations and data, and an actual plane, which handles computation requests, data requests, data objects and computation results in the physical network. A throughput optimal policy, implemented in the virtual plane, provides a basis for adaptive and distributed computation, caching, and request forwarding in the actual plane. The framework provides superior performance in terms of request satisfaction delay as compared with several baseline policies over multiple network topologies.
    Type: Grant
    Filed: April 19, 2023
    Date of Patent: April 16, 2024
    Assignee: Northeastern University
    Inventors: Edmund Meng Yeh, Khashayar Kamran
  • Patent number: 11951124
    Abstract: Tellurium nanowires synthesized using green chemistry methods and having unique morphologies and functional properties are provided. The nanowires have a core of hexagonal crystal phase tellurium and a polymer coating, and can be used for treating cancer without apparent cytotoxicity toward normal human cells.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: April 9, 2024
    Assignee: Northeastern University
    Inventors: David Medina Cruz, Ada Vernet Crua, Thomas J. Webster
  • Patent number: 11951560
    Abstract: The present disclosure provides a wire and arc additive manufacturing (WAAM) method for a titanium alloy. The method includes the following steps: step 1: performing a WAAM process assisted by cooling and rolling; step 2: milling side and top surfaces of an additive part; step 3: performing, by friction stir processing (FSP) equipment, an FSP process on the additive part, and applying cooling and rolling to a side wall of the additive part through a cooling and rolling device during the FSP process; step 4: finish-milling the top surface of the additive part for a WAAM process in the next step; and step 5: repeating the above steps cyclically until final forming of the part is finished. This WAAM method completely breaks dendritic structures and refines grains in the WAAM process of the titanium alloy, thereby effectively repairing defects such as pores and cracks.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: April 9, 2024
    Assignee: NORTHEASTERN UNIVERSITY
    Inventors: Changshu He, Jingxun Wei, Ying Li, Zhiqiang Zhang, Ni Tian, Gaowu Qin
  • Patent number: 11956763
    Abstract: Methods and systems for allocating radio access network (RAN) spectrum resources among a plurality of mobile virtual network operators (MVNOs) of a network of base stations. The methods and systems include determining a slicing enforcement policy that assigns resource blocks (RBs) of frequency units and time slots of spectrum resources to each MVNO according to a slicing policy in which each MVNO is allocated an amount of the spectrum resources on at least one base station in a determined time span. The slicing enforcement policy minimizes overlap between each MVNO's set of RBs with another MVNO's set of RBs on a same base station, and interference between each MVNO's set of RBs with another MVNO's set of RBs on an interfering base station.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: April 9, 2024
    Assignee: Northeastern University
    Inventors: Salvatore D'Oro, Francesco Restuccia, Tommaso Melodia
  • Patent number: 11951651
    Abstract: Provided is an intelligent 3D printing method for a large 3D deep complex engineering geological model, including the steps of firstly, determining physical and mechanical parameters of the similar materials of the intact rock mass and the rock mass structure, and selecting a cementing agent; performing a small-scale 3D printing test at different material ratios and 3D printing parameters; determining the 3D printing similar material ratios and the 3D printing parameters; establishing a 3D digital model, planning printing paths, and determining pore diameters, number and combination form of the print heads; conveying the similar materials to the print heads; under the control of a 3D printing intelligent coupling control system, running each print head according to the planned and generated printing paths to complete printing; and finally, testing a printing effect of the model.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: April 9, 2024
    Assignee: NORTHEASTERN UNIVERSITY
    Inventors: Xiating Feng, Zhengwei Li, Shiming Mei, Yanhua Gong
  • Patent number: 11952370
    Abstract: Selective small molecule regulators of GIRK potassium channels are provided, which are effective in treatment of post-traumatic stress disorder and other medical conditions.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: April 9, 2024
    Assignees: Northeastern University, Indiana University Research and Technology Corporation
    Inventors: Ganeshsingh A. Thakur, Diomedes E. Logothetis, Lucas Cantwell, Yu Xu, Anantha Shekhar
  • Patent number: 11945042
    Abstract: The present disclosure provides a wire and arc additive manufacturing (WAAM) method for a magnesium alloy. The method includes the following steps: step 1: performing a WAAM process assisted by cooling and rolling; step 2: milling side and top surfaces of an additive part; step 3: performing, by friction stir processing (FSP) equipment, an FSP process on the additive part, and applying cooling and rolling to a side wall of the additive part through a cooling and rolling device during the FSP process; step 4: finish-milling the top surface of the additive part for a WAAM process in the next step; and step 5: repeating the above steps cyclically until final forming of the part is finished. The present disclosure completely breaks dendritic structures and refines grains in the WAAM process of the magnesium alloy, thereby effectively repairing defects such as pores and cracks.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: April 2, 2024
    Assignee: NORTHEASTERN UNIVERSITY
    Inventors: Changshu He, Jingxun Wei, Ying Li, Zhiqiang Zhang, Ni Tian, Gaowu Qin
  • Patent number: 11949544
    Abstract: A polymorphic platform for wireless communication systems is provided that employs trained classification techniques to determine physical layer parameters from a transmitter at a receiver. The system includes a learning module to determine transmitted physical layer parameters of the signal using a trained classification module, such as a deep learning neural network. The trained classification module receives I/Q input samples from receiver circuitry and processes the I/Q input samples to determine transmitted physical layer parameters from the transmitter. The system includes a polymorphic processing unit that demodulates data from the signal based on the determined transmitted parameters.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: April 2, 2024
    Assignee: Northeastern University
    Inventors: Tommaso Melodia, Francesco Restuccia
  • Patent number: 11933778
    Abstract: Hybrid nanopores, comprising a protein pore supported within a solid-state membrane, which combine the robust nature of solid-state membranes with the easily tunable and precise engineering of protein nanopores. In an embodiment, a lipid-free hybrid nanopore comprises a water soluble and stable, modified portal protein of the Thermus thermophilus bacteriophage G20c, electrokinetically inserted into a larger nanopore in a solid-state membrane. The hybrid pore is stable and easy to fabricate, and exhibits low peripheral leakage, allowing sensing and discrimination among different types of biomolecules.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: March 19, 2024
    Assignees: Northeastern University, University of York
    Inventors: Meni Wanunu, Alfred Antson, Sandra Greive, Benjamin Cressiot
  • Patent number: 11926965
    Abstract: Provided herein are mixed pulp compositions comprising a short fiber plant pulp (e.g., sugar cane bagasse) and a long fiber plant pulp (e.g. bamboo fiber). Also provided herein is a process for preparing the compositions.
    Type: Grant
    Filed: November 19, 2021
    Date of Patent: March 12, 2024
    Assignee: NORTHEASTERN UNIVERSITY
    Inventor: Hongli Zhu
  • Patent number: 11927538
    Abstract: Zero power wireless sensors, devices, and systems are used for crop water content monitoring. The sensors consume no power while monitoring for the presence of dry crop conditions. Infrared reflectance from plants is measured and when selected spectral conditions are met, a circuit is closed, activating an alarm, an RFID tag, or a radio transmitter. The deployed sensors consume no power while monitoring, reducing or eliminating the need to change batteries.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: March 12, 2024
    Assignee: Northeastern University
    Inventors: Matteo Rinaldi, Zhenyun Qian, Vageeswar Rajaram
  • Patent number: 11921109
    Abstract: Microfluidic devices for use with reagents bound to microspheres for determination of the concentration of an analyte in a liquid sample are provided. The devices include two sequential mixing channels that promote rapid binding of microsphere-bound reagents with reagents in solution and a means for detecting labeled microsphere-bound reaction products. Also provided are methods for using the devices with microsphere-bound reagents to determine the concentration of an analyte in a liquid sample and to measure the binding affinity of antibody for an antigen.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: March 5, 2024
    Assignees: Northeastern University, The General Hospital Corporation
    Inventors: Tania Konry, Martin L. Yarmush
  • Patent number: 11913085
    Abstract: A method for preparing a press-hardened steel component is provided. The method includes forming a heated blank by heating a steel alloy blank to a first temperature in a first zone of a furnace having two or more zones, and after the heating of the steel alloy blank to the first temperature, heating the steel alloy blank to a second temperature in a second zone of the furnace. The second temperature is greater than the first temperature. The first zone has a first flow rate for a protective gas, and the second zone has a second flow rate for the protective gas that is greater than the first flow rate. The method further includes stamping and quenching the heated blank at a constant rate to a temperature between a martensite finish temperature of the steel alloy defining the steel alloy blank and room temperature to form the press-hardened steel component.
    Type: Grant
    Filed: October 13, 2022
    Date of Patent: February 27, 2024
    Assignees: GM Global Technology Operations LLC, Northeastern University
    Inventors: Zhisong Chai, Tingdong Ren, Jinlong Zhu, Wei Xu, Jianfeng Wang
  • Patent number: 11913336
    Abstract: The invention relates to a low-power microwave coring machine suitable for lunar rocks and a use method. The low-power microwave coring machine suitable for lunar rocks comprises an equipment platform, wherein the support framework front plate and the support framework rear plate are mounted on the equipment platform in a sliding manner, a rear end surface of the support framework rear plate is connected with a front end of the microwave generator mounted on the equipment platform, a rear end of the microwave generator is sequentially connected with the fixed waveguide, the rotary waveguide, the power divider and the drill drum, the high-precision slip ring structure is mounted on the drill drum, the gear ferrules are arranged on an outer wall of the rotary waveguide and an outer wall of the drill drum.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: February 27, 2024
    Assignee: NORTHEASTERN UNIVERSITY
    Inventors: Xiating Feng, Feng Lin, Chengxiang Yang, Jun Tian, Tianyang Tong, Shiping Li