Patents Assigned to Novellus Systems, Inc.
  • Patent number: 10006144
    Abstract: Methods, apparatus, and systems for depositing copper and other metals are provided. In some implementations, a wafer substrate is provided to an apparatus. The wafer substrate has a surface with field regions and a feature. A copper layer is plated onto the surface of the wafer substrate. The copper layer is annealed to redistribute copper from regions of the wafer substrate to the feature. Implementations of the disclosed methods, apparatus, and systems allow for void-free bottom-up fill of features in a wafer substrate.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: June 26, 2018
    Assignee: Novellus Systems, Inc.
    Inventors: Jonathan D. Reid, Huanfeng Zhu
  • Patent number: 10008428
    Abstract: Methods and apparatus to form films on sensitive substrates while preventing damage to the sensitive substrate are provided herein. In certain embodiments, methods involve forming a bilayer film on a sensitive substrate that both protects the underlying substrate from damage and possesses desired electrical properties. Also provided are methods and apparatus for evaluating and optimizing the films, including methods to evaluate the amount of substrate damage resulting from a particular deposition process and methods to determine the minimum thickness of a protective layer. The methods and apparatus described herein may be used to deposit films on a variety of sensitive materials such as silicon, cobalt, germanium-antimony-tellerium, silicon-germanium, silicon nitride, silicon carbide, tungsten, titanium, tantalum, chromium, nickel, palladium, ruthenium, or silicon oxide.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: June 26, 2018
    Assignee: Novellus Systems, Inc.
    Inventors: Hu Kang, Shankar Swaminathan, Adrien LaVoie, Jon Henri
  • Publication number: 20180158683
    Abstract: Methods for depositing nanolaminate protective layers over a core layer to enable deposition of high quality conformal films over the core layer for use in advanced multiple patterning schemes are provided. In certain embodiments, the methods involve depositing a thin silicon oxide or titanium oxide film using plasma-based atomic layer deposition techniques with a low high frequency radio frequency (HFRF) plasma power, followed by depositing a conformal titanium oxide film or spacer with a high HFRF plasma power.
    Type: Application
    Filed: January 18, 2018
    Publication date: June 7, 2018
    Applicant: Novellus Systems, Inc.
    Inventors: Frank L. Pasquale, Shankar Swaminathan, Adrien LaVoie, Nader Shamma, Girish A. Dixit
  • Patent number: 9982357
    Abstract: An apparatus for continuous simultaneous electroplating of two metals having substantially different standard electrodeposition potentials (e.g., for deposition of Sn—Ag alloys) comprises an anode chamber for containing an anolyte comprising ions of a first, less noble metal, (e.g., tin), but not of a second, more noble, metal (e.g., silver) and an active anode; a cathode chamber for containing catholyte including ions of a first metal (e.g., tin), ions of a second, more noble, metal (e.g., silver), and the substrate; a separation structure positioned between the anode chamber and the cathode chamber, where the separation structure substantially prevents transfer of more noble metal from catholyte to the anolyte; and fluidic features and an associated controller coupled to the apparatus and configured to perform continuous electroplating, while maintaining substantially constant concentrations of plating bath components for extended periods of use.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: May 29, 2018
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, David W. Porter
  • Patent number: 9941108
    Abstract: Plasma is generated using elemental hydrogen, a weak oxidizing agent, and a fluorine containing gas. An inert gas is introduced to the plasma downstream of the plasma source and upstream of a showerhead that directs gas mixture into the reaction chamber where the mixture reacts with the high-dose implant resist. The process removes both the crust and bulk resist layers at a high strip rate, and leaves the work piece surface substantially residue free with low silicon loss.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: April 10, 2018
    Assignee: Novellus Systems, Inc.
    Inventors: Haruhiro Harry Goto, David Cheung
  • Patent number: 9905423
    Abstract: Methods for depositing nanolaminate protective layers over a core layer to enable deposition of high quality conformal films over the core layer for use in advanced multiple patterning schemes are provided. In certain embodiments, the methods involve depositing a thin silicon oxide or titanium oxide film using plasma-based atomic layer deposition techniques with a low high frequency radio frequency (HFRF) plasma power, followed by depositing a conformal titanium oxide film or spacer with a high HFRF plasma power.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: February 27, 2018
    Assignee: Novellus Systems, Inc.
    Inventors: Frank L. Pasquale, Shankar Swaminathan, Adrien LaVoie, Nader Shamma, Girish A. Dixit
  • Patent number: 9899230
    Abstract: The embodiments disclosed herein pertain to novel methods and apparatus for removing material from a substrate. In certain embodiments, the method and apparatus are used to remove negative photoresist, though the disclosed techniques may be implemented to remove a variety of materials. In practicing the disclosed embodiments, a stripping solution may be introduced from an inlet to an internal manifold, sometimes referred to as a cross flow manifold. The solution flows laterally through a relatively narrow cavity between the substrate and the base plate. Fluid exits the narrow cavity at an outlet, which is positioned on the other side of the substrate, opposite the inlet and internal manifold. The substrate spins while in contact with the stripping solution to achieve a more uniform flow over the face of the substrate. In some embodiments, the base plate includes protuberances which operate to increase the flow rate (and thereby increase the local Re) near the face of the substrate.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: February 20, 2018
    Assignee: Novellus Systems, Inc.
    Inventors: Bryan L. Buckalew, Steven T. Mayer, David Porter, Thomas A. Ponnuswamy
  • Patent number: 9873946
    Abstract: The present invention provides improved methods of preparing a low-k dielectric material on a substrate. The methods involve multiple operation ultraviolet curing processes in which UV intensity, wafer substrate temperature, UV spectral distribution, and other conditions may be independently modulated in each operation. Operations may be pulsed or even be concurrently applied to the same wafer. In certain embodiments, a film containing a structure former and a porogen is exposed to UV radiation in a first operation to facilitate removal of the porogen and create a porous dielectric film. In a second operation, the film is exposed to UV radiation to increase cross-linking within the porous film.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: January 23, 2018
    Assignee: Novellus Systems, Inc.
    Inventors: Jason Dirk Haverkamp, Dennis M. Hausmann, Kevin M. McLaughlin, Krishnan Shrinivasan, Michael Rivkin, Eugene Smargiassi, Mohamed Sabri
  • Patent number: 9856574
    Abstract: Provided herein are methods and apparatus for determining leveler concentration in an electroplating solution. The approach allows the concentration of leveler to be detected and measured, even at very low leveler concentrations. According to the various embodiments, the methods involve providing an electrode with a metal surface, exposing the electrode to a pre-acceleration solution with at least one accelerator, allowing the surface of the electrode to become saturated with accelerator, measuring an electrochemical response while plating the electrode in a solution, and determining the concentration of leveler in the solution by comparing the measured electrochemical response to a model relating leveler concentration to known electrochemical responses. According to other embodiments, the apparatus includes an electrode, a measuring apparatus or an electrochemical cell configured to measure an electrochemical response, and a controller designed to carry out the method outlined above.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: January 2, 2018
    Assignee: Novellus Systems, Inc.
    Inventor: Steven T. Mayer
  • Patent number: 9852913
    Abstract: Disclosed are pre-wetting apparatus designs and methods. These apparatus designs and methods are used to pre-wet a wafer prior to plating a metal on the surface of the wafer. Disclosed compositions of the pre-wetting fluid prevent corrosion of a seed layer on the wafer and also improve the filling rates of features on the wafer.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: December 26, 2017
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, David W. Porter, Mark J. Willey
  • Patent number: 9834852
    Abstract: The embodiments herein relate to methods and apparatus for electroplating one or more materials onto a substrate. In many cases the material is a metal and the substrate is a semiconductor wafer, though the embodiments are no so limited. Typically, the embodiments herein utilize a channeled plate positioned near the substrate, creating a cross flow manifold defined on the bottom by the channeled plate, on the top by the substrate, and on the sides by a cross flow confinement ring. During plating, fluid enters the cross flow manifold both upward through the channels in the channeled plate, and laterally through a cross flow side inlet positioned on one side of the cross flow confinement ring. The flow paths combine in the cross flow manifold and exit at the cross flow exit, which is positioned opposite the cross flow inlet. These combined flow paths result in improved plating uniformity.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: December 5, 2017
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Bryan L. Buckalew, Haiying Fu, Thomas Ponnuswamy, Hilton Diaz Camilo, Robert Rash, David W. Porter
  • Patent number: 9835388
    Abstract: Provided are adaptive heat transfer methods and systems for uniform heat transfer to and from various types of workpieces, such as workpieces employed during fabrication of semiconductor devices, displays, light emitting diodes, and photovoltaic panels. This adaptive approach allows for reducing heat transfer variations caused by deformations of workpieces. Deformation may vary in workpieces depending on types of workpieces, processing conditions, and other variables. Such deformations are hard to anticipate and may be random. Provided systems may change their configurations to account for the conformation of each new workpiece processed. Further, adjustments may be performed continuously of discretely during heat transfer. This flexibility can be employed to improve heat transfer uniformity, achieve uniform temperature profile, reduce deformation, and for various other purposes.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: December 5, 2017
    Assignee: Novellus Systems, Inc.
    Inventors: Keerthi Gowdaru, Krishnan Shrinivasan
  • Patent number: 9828688
    Abstract: Disclosed are pre-wetting apparatus designs and methods. In some embodiments, a pre-wetting apparatus includes a degasser, a process chamber, and a controller. The process chamber includes a wafer holder configured to hold a wafer substrate, a vacuum port configured to allow formation of a subatmospheric pressure in the process chamber, and a fluid inlet coupled to the degasser and configured to deliver a degassed pre-wetting fluid onto the wafer substrate at a velocity of at least about 7 meters per second whereby particles on the wafer substrate are dislodged and at a flow rate whereby dislodged particles are removed from the wafer substrate. The controller includes program instructions for forming a wetting layer on the wafer substrate in the process chamber by contacting the wafer substrate with the degassed pre-wetting fluid admitted through the fluid inlet at a flow rate of at least about 0.4 liters per minute.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: November 28, 2017
    Assignee: Novellus Systems, Inc.
    Inventors: Bryan L. Buckalew, Steven T. Mayer, Thomas A. Ponnuswamy, Robert Rash, Brian Paul Blackman, Doug Higley
  • Patent number: 9822461
    Abstract: Methods, systems, and apparatus for plating a metal onto a work piece are described. In one aspect, an apparatus includes a plating chamber, a substrate holder, an anode chamber housing an anode, an ionically resistive ionically permeable element positioned between a substrate and the anode chamber during electroplating, an auxiliary cathode located between the anode and the ionically resistive ionically permeable element, and an insulating shield with an opening in its central region. The insulating shield may be movable with respect to the ionically resistive ionically permeable element to vary a distance between the shield and the ionically resistive ionically permeable element during electroplating.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: November 21, 2017
    Assignee: Novellus Systems, Inc.
    Inventors: Zhian He, David W. Porter, Jonathan D. Reid, Frederick D. Wilmot
  • Patent number: 9816193
    Abstract: Methods, systems, and apparatus for plating a metal onto a work piece with a plating solution having a low oxygen concentration are described. In one aspect, a method includes reducing an oxygen concentration of a plating solution. The plating solution includes about 100 parts per million or less of an accelerator. After reducing the oxygen concentration of the plating solution, a wafer substrate is contacted with the plating solution in a plating cell. The oxygen concentration of the plating solution in the plating cell is about 1 part per million or less. A metal is electroplated with the plating solution onto the wafer substrate in the plating cell. After electroplating the metal onto the wafer substrate, an oxidizing strength of the plating solution is increased.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: November 14, 2017
    Assignee: Novellus Systems, Inc.
    Inventors: Kousik Ganesan, Tighe Spurlin, Jonathan D. Reid, Shantinath Ghongadi, Andrew McKerrow, James E. Duncan
  • Patent number: 9816196
    Abstract: Apparatus and methods for electroplating metal onto substrates are disclosed. The electroplating apparatus comprise an electroplating cell and at least one oxidization device. The electroplating cell comprises a cathode chamber and an anode chamber separated by a porous barrier that allows metal cations to pass through but prevents organic particles from crossing. The oxidation device (ODD) is configured to oxidize cations of the metal to be electroplated onto the substrate, which cations are present in the anolyte during electroplating. In some embodiments, the ODD is implemented as a carbon anode that removes Cu(I) from the anolyte electrochemically. In other embodiments, the ODD is implemented as an oxygenation device (OGD) or an impressed current cathodic protection anode (ICCP anode), both of which increase oxygen concentration in anolyte solutions. Methods for efficient electroplating are also disclosed.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: November 14, 2017
    Assignee: Novellus Systems, Inc.
    Inventors: Tighe A. Spurlin, Charles L. Merrill, Ludan Huang, Matthew Thorum, Lee Brogan, James E. Duncan, Frederick D. Wilmot, Robert Marshall Stowell, Steven T. Mayer, Haiying Fu, David W. Porter, Shantinath Ghongadi, Jonathan D. Reid, Hyosang S. Lee, Mark J. Willey
  • Patent number: 9786570
    Abstract: Methods and apparatus to form films on sensitive substrates while preventing damage to the sensitive substrate are provided herein. In certain embodiments, methods involve forming a bilayer film on a sensitive substrate that both protects the underlying substrate from damage and possesses desired electrical properties. Also provided are methods and apparatus for evaluating and optimizing the films, including methods to evaluate the amount of substrate damage resulting from a particular deposition process and methods to determine the minimum thickness of a protective layer. The methods and apparatus described herein may be used to deposit films on a variety of sensitive materials such as silicon, cobalt, germanium-antimony-tellerium, silicon-germanium, silicon nitride, silicon carbide, tungsten, titanium, tantalum, chromium, nickel, palladium, ruthenium, or silicon oxide.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: October 10, 2017
    Assignee: Novellus Systems, Inc.
    Inventors: Hu Kang, Shankar Swaminathan, Adrien LaVoie, Jon Henri
  • Patent number: 9746427
    Abstract: The embodiments herein relate to methods and apparatus for detecting whether unwanted metallic deposits are present on a bottom of a substrate holder used in an electroplating apparatus. The presence of such unwanted deposits is harmful to electroplating processes because the deposits scavenge current that is intended to cause electroplating on a substrate. When such current scavenging occurs, the electroplating results on the substrates are poor. For instance, features positioned near the edge of a substrate are likely to plate to an insufficient thickness. Further, where such current scavenging is great, the overall thickness of the material plated on the substrate may be too thin. As such, there is a need to detect when such unwanted deposits are present, such that plating under these poor conditions may be avoided. This detection will help preserve costly wafers.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: August 29, 2017
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Haiying Fu, Thomas Anand Ponnuswamy, Bryan L. Buckalew
  • Patent number: 9732416
    Abstract: A rotatable wafer chuck includes chuck arms and wafer holders that are aerodynamically shaped to reduce turbulence during rotation. A wafer holder may include a friction support and an independently rotatable vertical alignment member and clamping member that is shaped to reduce drag. The shape reduces turbulence during edge bevel etching to improve the uniformity of the edge exclusion and during high-speed rotation to improve particle performance.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: August 15, 2017
    Assignee: Novellus Systems, Inc.
    Inventors: Craig P. Stephens, Matt Kanetomi, Joseph Richardson, Chris Veazey, Aaron LaBrie
  • Patent number: 9728380
    Abstract: Apparatuses and techniques for providing for variable radial flow conductance within a semiconductor processing showerhead are provided. In some cases, the radial flow conductance may be varied dynamically during use. In some cases, the radial flow conductance may be fixed but may vary as a function of radial distance from the showerhead centerline. Both single plenum and dual plenum showerheads are discussed.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: August 8, 2017
    Assignee: Novellus Systems, Inc.
    Inventors: Jonathan D. Mohn, Shawn M. Hamilton, Harald te Nijenhuis, Jeffrey E. Lorelli, Kevin Madrigal