Patents Assigned to NUCURRENT INC.
  • Patent number: 11770031
    Abstract: Wireless power transfer systems, disclosed, include one or more circuits to facilitate high power transfer at high frequencies. Such wireless power transfer systems include a transmission integrated circuit which includes a damping circuit and a transmitter controller, configured to dampen a wireless power signal such that communications fidelity is upheld at high power. The damping circuit includes at least a damping transistor that is configured to receive, from the transmitter controller, a damping signal for switching the transistor to control damping during transmission of the wireless data signals. Utilizing such systems enables wireless power transfer at high frequency, such as 13.56 MHz, at voltages over 1 Watt, while maintaining fidelity of in-band communications associated with the higher power wireless power signal.
    Type: Grant
    Filed: October 14, 2022
    Date of Patent: September 26, 2023
    Assignee: NuCurrent, Inc.
    Inventors: Alberto Peralta, Pavel Shostak
  • Patent number: 11764617
    Abstract: A wireless power receiver system includes a receiver antenna configured for coupling with a transmission antenna and receiving the virtual AC power signals from the transmission antenna, the receiver antenna operating based on an operating frequency. The wireless power receiver system further includes a receiver power conditioning system configured to (i) receive the virtual AC power signals, (ii) convert the virtual AC power signals to alternating current (AC) received power signals, and (iii) provide the AC input power signals to a load.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: September 19, 2023
    Assignee: NuCurrent, Inc.
    Inventors: Mark Melone, Alberto Peralta
  • Patent number: 11764622
    Abstract: A wireless power transfer system includes selecting an operating mode from a plurality of transmission modes, which includes, at least, a first operating mode having a first power level and a first data rate and a second operating mode having a second power level and a second power rate, wherein the first data rate is greater than the second data rate and the first power level is less than the second power level. The system further includes performing, one or more of encoding the wireless data signals, decoding the wireless data signals, receiving the wireless data signals, transmitting the wireless data signals or combinations thereof. The system further includes driving a transmitter antenna of the wireless power transmission system, by the amplifier, based on a driving signal generated in accordance with the selected operating mode.
    Type: Grant
    Filed: August 15, 2022
    Date of Patent: September 19, 2023
    Assignee: NuCurrent, Inc.
    Inventors: Jason Luzinski, Alberto Peralta
  • Patent number: 11764614
    Abstract: An electrically conductive material configured having at least one opening of various unlimited geometries extending through its thickness is provided. The opening is designed to modify eddy currents that form within the surface of the material from interaction with magnetic fields that allow for wireless energy transfer therethrough. The opening may be configured as a cut-out, a slit or combination thereof that extends through the thickness of the electrically conductive material. The electrically conductive material is configured with the cut-out and/or slit pattern positioned adjacent to an antenna configured to receive or transmit electrical energy wirelessly through near-field magnetic coupling (NFMC). A magnetic field shielding material, such as a ferrite, may also be positioned adjacent to the antenna. Such magnetic shielding materials may be used to strategically block eddy currents from electrical components and circuitry located within a device.
    Type: Grant
    Filed: August 15, 2022
    Date of Patent: September 19, 2023
    Assignee: NuCurrent, Inc.
    Inventors: Alberto Peralta, Md. Nazmul Alam, Vinit Singh, Sina Haji Alizad
  • Patent number: 11756728
    Abstract: The present application relates to an apparatus which comprises a wireless power transfer (WPT) system. This system comprises features which allow it to transfer more power wirelessly at extended distances than other systems operating in the same frequency range. The system possesses heat dissipation features; these features allow it to operate effectively in elevated-temperature environments, and to transfer power at higher levels and/or greater distances than a typical power-transfer system. The system also might include design features to withstand mechanical shocks, stresses, and impacts for use in a rugged environment. The system can also comprise adaptations to reduce electromagnetic interference (EMI), and can comprise specially shaped components with magnetic/ferrimagnetic properties that enhance performance. Other potential features include power conditioning by combining, within one circuit or one board, multiple elements that protect against excessive current, over-voltage, and/or reverse voltage.
    Type: Grant
    Filed: March 4, 2022
    Date of Patent: September 12, 2023
    Assignee: NuCurrent, Inc.
    Inventors: Pavel Shostak, Oleg Los, Unnati Wadkar, Jason Luzinski, Md. Nazmul Alam, Mark D. Melone, Matt Zamborsky, Jacob Babcock, Alberto Peralta, Christine Frysz
  • Patent number: 11757311
    Abstract: A power transmitter includes a control and communications unit and an inverter circuit configured to receive input power and convert the input power to a power signal. The power transmitter further includes a coil configured to transmit the power signal to a power receiver, the coil formed of wound Litz wire and including a first coil portion and a second coil portion, the first coil portion defining a top face and a first diameter, the second coil portion defining a second diameter, the second diameter being greater than the first diameter. The power transmitter further includes a shielding comprising a ferrite core and defining a cavity and a magnetic ring, the cavity configured such that the ferrite core substantially surrounds all but the top face of the first coil portion and the second coil portion is positioned, at least in part, above the magnetic ring.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: September 12, 2023
    Assignee: NuCurrent, Inc.
    Inventor: Md Nazmul Alam
  • Patent number: 11757307
    Abstract: A system for wireless power transfer includes a wireless transmission system, a wireless receiver system, and a dynamic tuning controller. The wireless transmission system configures an electrical energy signal, using the power from the input power source, for transmission by a transmission antenna. The wireless receiver system is operatively associated with a load and is configured to receive the electrical energy signal from the wireless transmission system, via coupling of the transmission antenna and receiver antenna, and configure the electrical energy signal to transfer power to the load. The dynamic tuning controller is configured to determine an output of the system and determine existence of disturbances to the system, based on the output, control alterations to one or more forward gain elements of one or more of the wireless transmission system, the wireless receiver system, and combinations thereof, if one or more disturbances exist, based on the output.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: September 12, 2023
    Assignee: NuCurrent, Inc.
    Inventors: Alberto Peralta, Pavel Shostak, Jim Crnkovic
  • Patent number: 11757313
    Abstract: A power transmitter for wireless power transfer includes a control and communications unit configured to provide power control signals to control a power level of a power signal configured for transmission to a power receiver and including a pulse width modulation (PWM) signal generator for determining and selecting the operating frequency from the operating frequency range. The power transmitter further includes an inverter circuit configured to receive a direct current (DC) power and convert the input power to a power signal, coil configured to transmit the power signal to a power receiver, the coil formed of wound Litz wire and including at least one layer, the coil defining, at least, a top face, and a shielding comprising a ferrite core and defining a cavity, the cavity configured such that the ferrite core substantially surrounds all but the top face of the coil.
    Type: Grant
    Filed: January 31, 2022
    Date of Patent: September 12, 2023
    Assignee: NuCurrent, Inc.
    Inventors: Jason Green, Andrew Kovacs, Mark Melone, Md Nazmul Alam
  • Patent number: 11754618
    Abstract: A testing device for testing electronic devices includes a test controller and a wireless power transmission system. The test controller is configured to generate testing signals for transmission to at least one of the plurality of electronic devices and receive testing data, in response to the testing signals. The wireless power transmission system is configured to receive the testing signal from the test controller, generate a power signal and a first asynchronous serial data signal in accordance with a wireless power and data transfer protocol, the first asynchronous serial data signal based on the testing signals, decode the power signal to extract a second data signal compliant with the wireless power and data transfer protocol, and decode the second data signal compliant with the wireless power and data transfer protocol to extract a second asynchronous serial data signal, the second asynchronous serial data signal based on the testing data.
    Type: Grant
    Filed: October 15, 2021
    Date of Patent: September 12, 2023
    Assignee: NuCurrent, Inc.
    Inventors: Jason Luzinski, Michael Katz, Mark Melone
  • Patent number: 11750037
    Abstract: A wireless power transfer system is provided having a wireless transmission system that includes an input to receive input power from an input power source, a transmission antenna, and a transmission controller configured to generate wireless signals based, at least in part, on the input power, the wireless signals including wireless power signals and wireless data signals, and to transmit such wireless signals. The wireless power transfer system further includes a wireless receiver system in a wireless peripheral device, the wireless receiver system having a receiver antenna configured to receive the wireless power signals and wireless data signals via inductive coupling with the transmission antenna, as well as a receiver controller configured to determine the acceleration of the wireless peripheral device, generate a prescribed update frequency based on the detected acceleration, and transmit operational updates to the wireless transmission system at the prescribed update frequency.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: September 5, 2023
    Assignee: NuCurrent, Inc.
    Inventor: Mark Melone
  • Patent number: 11742687
    Abstract: A device charging system includes a legacy battery-powered mobile electronic device configured for wired-only charging and a wireless charging enabled battery pack. The wireless charging enabled battery pack may contain one or more battery cells as well as a power management integrated circuit (IC) configured to manage charging of the battery cells. The wireless charging enabled battery pack also contains a wireless power module to receive power wirelessly from a WPT (wireless power transfer) power source outside of the legacy device. In keeping with embodiments of the disclosure, a pack microcontroller in the battery pack interfaces to the legacy device, presenting an interface consistent with a wired-only charged battery pack.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: August 29, 2023
    Assignee: NuCurrent, Inc.
    Inventors: Jason Luzinski, Mark D. Melone, Rob Diebold
  • Patent number: 11728684
    Abstract: Wireless power transfer systems, disclosed, include a wireless power transmission system and a wireless power receiver system. The wireless power transmission system includes a transmitter antenna configured to couple with a receiver antenna to transmit alternating current (AC) wireless signals to the receiver antenna. Antenna coupling may be inductive and may operate in conformance to a wireless power and data transfer protocol. A transmission controller drives the transmitter antenna at an operating frequency, and either the wireless power transmission system or the wireless power receiver system may damp the wireless power transmission to create a data signal containing a serial asynchronous data signal.
    Type: Grant
    Filed: January 24, 2022
    Date of Patent: August 15, 2023
    Assignee: NUCURRENT, INC.
    Inventors: Mark Melone, Michael Katz
  • Patent number: 11722011
    Abstract: A wireless power transmission system includes a transmitter antenna, an amplifier, and a transmitter controller. The transmitter antenna is configured to transmit wireless power signals and wireless data signals. The amplifier is configured to receive a driving signal at a gate of the at least one transistor and invert a direct power (DC) input power signal to generate the AC wireless signal at the operating frequency. The transmitter controller is configured to configure the driving signal based, at least, on an operating frequency and an initial beaconing process, the initial beaconing process for determining presence of a wireless receiver system at a coupling between the transmitter antenna and a receiver antenna of the wireless receiver system, determine amplifier voltage instructions for the amplifier based on the initial beaconing process, and drive the amplifier by providing the driving signal and the amplifier voltage instructions to the amplifier.
    Type: Grant
    Filed: January 31, 2022
    Date of Patent: August 8, 2023
    Assignee: NUCURRENT, INC.
    Inventors: Alberto Peralta, Michael Katz
  • Patent number: 11711112
    Abstract: A method for operating a wireless power transmission system includes providing a driving signal for driving a transmission antenna of the wireless power transmission system, the driving signal based, at least, on an operating frequency for the wireless power transmission system. The method further includes receiving, at a damping transistor of a damping circuit, damping signals for switching the damping transistor to one of an active mode and an inactive mode to control signal damping during transmission or receipt of wireless data signals. The method further includes selectively damping, by the damping circuit, the AC wireless signals, during transmission of the wireless data signals if the damping signals set the damping circuit to the active mode.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: July 25, 2023
    Assignee: NuCurrent, Inc.
    Inventors: Alberto Peralta, Jason Luzinski
  • Patent number: 11705760
    Abstract: A wireless electrical energy transmission system is provided. The system comprises a wireless transmission base configured to wirelessly transmit electrical energy or data via near field magnetic coupling to a receiving antenna configured within an electronic device. The wireless electrical energy transmission system is configured with at least one transmitting antenna and a transmitting electrical circuit positioned within the transmission base. The transmission base is configured so that at least one electronic device can be wirelessly electrically charged or powered by positioning the at least one device external and adjacent to the transmission base.
    Type: Grant
    Filed: August 26, 2022
    Date of Patent: July 18, 2023
    Assignee: NuCurrent, Inc.
    Inventors: Alberto Peralta, Md. Nazmul Alam, Jacob D. Babcock, Vinit Singh, Christine A. Frysz
  • Patent number: 11695302
    Abstract: An antenna for wireless power transfer includes a first antenna terminal, a second antenna terminal, at least one inner turn, the at least one inner turn having an inner turn width, and at least one outer turn, the at least one outer turn having an outer turn width, the outer turn width greater than the inner turn width. The antenna further includes a substrate positioned underneath the at least one inner turn and the at least one outer turn and a plurality of separate panes of a magnetic shielding material. Each of the plurality of separate panes are positioned substantially co-planar, with respect to each other, and positioned between the substrate and both the at least one inner turns and the at least one outer turns.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: July 4, 2023
    Assignee: NuCurrent, Inc.
    Inventor: Md. Nazmul Alam
  • Patent number: 11695449
    Abstract: A method for operating a wireless power transmission system includes providing, a driving signal for driving a transmission antenna. The method further includes receiving, by at least one transistor of an amplifier, the driving signal at a gate of the at least one transistor and inverting a direct current (DC) input power signal to generate an AC wireless signal. The method further includes determining an operating mode for signal damping during transmission or receipt of wireless data signals by selecting one of a switching mode and an activation mode for the operating mode and determining damping signals based on the operating mode. The damping signals are configured for switching the damping transistor to control signal damping during transmission or receipt of wireless data signals. The method further includes selectively damping, by the damping circuit, the AC wireless signals, during transmission of the wireless data signals based on the damping signals.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: July 4, 2023
    Assignee: NUCURRENT, INC.
    Inventors: Alberto Peralta, Jason Luzinski
  • Patent number: 11689062
    Abstract: Wireless power transfer systems, disclosed, include a wireless power transmission system and a wireless power receiver system. The wireless power transmission system includes a transmitter antenna configured to couple with a receiver antenna to transmit alternating current (AC) wireless signals to the receiver antenna. Antenna coupling may be inductive and may operate in conformance to a wireless power and data transfer protocol. A transmission controller drives the transmitter antenna at an operating frequency, and either the wireless power transmission system or the wireless power receiver system may damp the wireless power transmission to create a data signal containing a serial asynchronous data signal.
    Type: Grant
    Filed: January 24, 2022
    Date of Patent: June 27, 2023
    Assignee: NUCURRENT, INC.
    Inventors: Mark Melone, Michael Katz
  • Patent number: 11689063
    Abstract: A wireless power transmission system includes a first antenna, a second antenna, a controller, a first power conditioning system, and a second power conditioning system. The controller is configured to determine a first driving signal for driving the first antenna based on a first operating frequency, a virtual AC power frequency, a variable slot length, and slot timing, and determine a second driving signal for driving the second antenna based on a second operating frequency, the slot length, and the slot timing. The first power conditioning system is configured to receive the first driving signal to generate the virtual AC power signals at the first operating frequency, the virtual AC power signals having peak voltages rising and falling based on the virtual AC power frequency. The second power conditioning system is configured to receive the second driving signal to generate the virtual DC power signals at the second operating frequency.
    Type: Grant
    Filed: March 29, 2022
    Date of Patent: June 27, 2023
    Assignee: NuCurrent, Inc.
    Inventors: Mark Melone, Alberto Peralta, Michael Katz
  • Patent number: 11682928
    Abstract: A wireless transmission system includes a transmitter antenna, a sensor, a demodulation circuit, and a transmitter controller. The sensor is configured to detect electrical information associated with AC wireless signals, the electrical information including, at least, a voltage of the AC wireless signals. The demodulation circuit is configured to receive the electrical information from the at least one sensor, detect a change in the electrical information, determine if the change in the electrical information meets or exceeds one of a rise threshold or a fall threshold, if the change exceeds one of the rise threshold or the fall threshold, generate an alert, and output a plurality of data alerts. The transmitter controller is configured to receive the plurality of data alerts from the demodulation circuit and decode the plurality of data alerts into the wireless data signals.
    Type: Grant
    Filed: January 24, 2022
    Date of Patent: June 20, 2023
    Assignee: NUCURRENT, INC.
    Inventors: Vikas Kasireddy, Alberto Peralta, Michael Katz, Md. Nazmul Alam