Patents Assigned to OpenLight Photonics, Inc.
  • Patent number: 11624942
    Abstract: Described herein are methods, systems, and apparatuses to utilize an electro-optic modulator including one or more heating elements. The modulator can utilize one or more heating elements to control an absorption or phase shift of the modulated optical signal. At least the active region of the modulator and the one or more heating elements of the modulator are included in a thermal isolation region comprising a low thermal conductivity to thermally isolate the active region and the one or more heating elements from a substrate of the PIC.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: April 11, 2023
    Assignee: OpenLight Photonics, Inc.
    Inventors: Robert Silvio Guzzon, Erik Norberg, Jonathan Edgar Roth
  • Patent number: 11585978
    Abstract: The wavelength response of an arrayed waveguide grating can be tuned, in accordance with various embodiments, using a beam sweeper including one or more heaters to shift a lateral position of light focused by the beam sweeper at an interface of the beam sweeper with an input free propagation region of the arrayed waveguide grating.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: February 21, 2023
    Assignee: OpenLight Photonics, Inc.
    Inventors: Jared Bauters, Brian R. Koch, Jonathan Edgar Roth, Gregory Alan Fish
  • Patent number: 11573123
    Abstract: Described herein are optical sensing devices for photonic integrated circuits (PICs). A PIC may comprise a plurality of waveguides formed in a silicon on insulator (SOI) substrate, and a plurality of heterogeneous lasers, each laser formed from a silicon material of the SOI substrate and to emit an output wavelength comprising an infrared wavelength. Each of these lasers may comprise a resonant cavity included in one of the plurality of waveguides, and a gain material comprising a non-silicon material and adiabatically coupled to the respective waveguide. A light directing element may direct outputs of the plurality of heterogeneous lasers from the PIC towards an object, and one or more detectors may detect light from the plurality of heterogeneous lasers reflected from or transmitted through the object.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: February 7, 2023
    Assignee: OpenLight Photonics, Inc.
    Inventors: Gregory Alan Fish, Jonathan Edgar Roth, Brandon Buckley
  • Patent number: 11546055
    Abstract: An optical transceiver can be calibrated using an internal receiver side eye scan generator, and calibration values (e.g., modulator values) can be stored in memory for recalibration of the optical transceiver. The eye scan generator can receive data from the transmitter portion via an integrated and reconfigurable loopback path. At a later time, different calibration values can be accessed in memory and used to recalibrate the optical transceiver or update the calibrated values using the receive-side eye scan generator operating in loopback mode.
    Type: Grant
    Filed: June 15, 2021
    Date of Patent: January 3, 2023
    Assignee: OpenLight Photonics, Inc.
    Inventors: Robert S. Guzzon, Sean P. Woyciehowsky, Roberto Marcoccia, Anand Ramaswamy, John Garcia, Sudharsanan Srinivasan
  • Patent number: 11536899
    Abstract: Absolute temperature measurements of integrated photonic devices can be accomplished with integrated bandgap temperature sensors located adjacent the photonic devices. In various embodiments, the temperature of the active region within a diode structure of a photonic device is measured with an integrated bandgap temperature sensor that includes one or more diode junctions either in the semiconductor device layer beneath the active region or laterally adjacent to the photonic device, or in a diode structure formed above the semiconductor device layer and adjacent the diode structure of the photonic device.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: December 27, 2022
    Assignee: OpenLight Photonics, Inc.
    Inventors: John Parker, Benjamin M. Curtin
  • Patent number: 11513288
    Abstract: In integrated optical structures (e.g., silicon-to-silicon-nitride mode converters) implemented in semiconductor-on-insulator substrates, wire waveguides whose sidewalls substantially consist of portions coinciding with crystallographic planes and do not extend laterally beyond the top surface of the wire waveguide may provide benefits in performance and/or manufacturing needs. Such wire waveguides may be manufactured, e.g., using a dry-etch of the semiconductor device layer down to the insulator layer to form a wire waveguide with exposed sidewalls, followed by a smoothing crystallographic wet etch.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: November 29, 2022
    Assignee: OpenLight Photonics, Inc.
    Inventors: Avi Feshali, John Hutchinson, Jared Bauters
  • Patent number: 11499923
    Abstract: Photonic errors in a photonic integrated circuit can be imaged using an on-chip light source integrated in a photonic layer of the circuit. The on-chip light source can generate light at wavelengths that propagates through one or more substrate layers to an image sensor sensitive to the wavelength range. The on-chip light source can be tunable and provide different power settings that can be utilized to detect different types of optical errors in the photonic integrated circuit.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: November 15, 2022
    Assignee: OpenLight Photonics, Inc.
    Inventor: Benjamin M. Curtin
  • Patent number: 11476636
    Abstract: Described are various configurations of integrated wavelength lockers including asymmetric Mach-Zehnder interferometers (AMZIs) and associated detectors. Various embodiments provide improved wavelength-locking accuracy by using an active tuning element in the AMZI to achieve an operational position with high locking sensitivity, a coherent receiver to reduce the frequency-dependence of the locking sensitivity, and/or a temperature sensor and/or strain gauge to computationally correct for the effect of temperature or strain changes.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: October 18, 2022
    Assignee: OpenLight Photonics, Inc.
    Inventors: John Parker, Jared Bauters, Jonathan Edgar Roth, Erik Norberg, Gregory Alan Fish
  • Patent number: 11437786
    Abstract: Embodiments of the invention describe polarization insensitive optical devices utilizing polarization sensitive components. Light comprising at least one polarization state is received, and embodiments of the invention select a first optical path for light comprising a first polarization state or a second optical path for light comprising a second polarization state orthogonal to the first polarization state. The optical paths include components to at least amplify and/or modulate light comprising the first polarization state; the second optical path includes a polarization rotator to rotate light comprising the second polarization state to the first polarization state.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: September 6, 2022
    Assignee: OpenLight Photonics, Inc.
    Inventors: Gregory Alan Fish, Erik Johan Norberg, John M. Garcia, Robert Silvio Guzzon, Daniel Knight Sparacin
  • Patent number: 11428646
    Abstract: Optical fabrication monitor structures can be included in a design fabricated on a wafer from a mask or fabrication reticle. A first set of components can be formed in an initial fabrication cycle, where the first set includes functional components and monitor structures. A second set of components can be formed by subsequent fabrication processes that can potentially cause errors or damage to the first set of components. The monitor structures can be implemented during fabrication (e.g., in a cleanroom) to detect fabrication errors without pulling or scrapping the wafer.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: August 30, 2022
    Assignee: OpenLight Photonics, Inc.
    Inventors: Erik Johan Norberg, Rui Liang, Benjamin M. Curtin, Jared Bauters
  • Patent number: 11428880
    Abstract: An optical pick and place machine that includes a self-calibrating optical controller for error feedback based optical placement of optical components using active alignment is described. The optical controller can include a loopback mode to generate a baseline value of light generated by a light source and measured by a photodetector within the optical controller. The optical controller can further include an active alignment mode in which the light is coupled from the pick and place machine to the optical device on which the component is placed. The optical coupling of the placed component can be evaluated against the baseline value to ensure that the optical coupling is within specification (e.g., within a prespecified range).
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: August 30, 2022
    Assignee: OpenLight Photonics, Inc.
    Inventors: Steven William Keck, Roberto Marcoccia, Steve McGowan
  • Patent number: 11430901
    Abstract: Embodiments of the invention describe apparatuses, optical systems, and methods related to utilizing optical cladding layers. According to one embodiment, a hybrid optical device includes a silicon semiconductor layer and a III-V semiconductor layer having an overlapping region, wherein a majority of a field of an optical mode in the overlapping region is to be contained in the III-V semiconductor layer. A cladding region between the silicon semiconductor layer and the III-V semiconductor layer has a spatial property to substantially confine the optical mode to the III-V semiconductor layer and enable heat dissipation through the silicon semiconductor layer.
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: August 30, 2022
    Assignee: OpenLight Photonics, Inc.
    Inventors: Erik Johan Norberg, Anand Ramaswamy, Brian Robert Koch
  • Patent number: 11418258
    Abstract: Power consumption in MZI-based integrated photonic switches or filters throughout the operational life can be reduced by reducing fabrication-induced phase misalignment between the unpowered operational mode of the switch or filter and the predominant switch state, and/or by enabling low-power compensation for any such misalignment. In various embodiments, misalignment is reduced by increasing the width of the waveguides implementing the interferometer arms of the MZI, and/or by structuring a region containing the MZI symmetrically to diminish stress-induced misalignment. In some embodiments, phase tuners are used to actively compensate for any phase misalignment, with a tuner drive voltage substantially lower than used to switch to the non-dominant state.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: August 16, 2022
    Assignee: OpenLight Photonics, Inc.
    Inventor: John Parker
  • Patent number: 11409141
    Abstract: A device, such as an electroabsorption modulator, can modulate a light intensity by controllably absorbing a selectable fraction of the light. The device can include a substrate. A waveguide positioned on the substrate can guide light. An active region positioned on the waveguide can receive guided light from the waveguide, absorb a fraction of the received light, and return a complementary fraction of the received light to the waveguide. Such absorption produces heat, mostly at an input portion of the active region. The input portion of the active region can be thermally coupled to the substrate, which can dissipate heat from the input portion, and can help avoid thermal runaway of the device. The active region can be thermally isolated from the substrate away from the input portion, which can maintain a relatively low thermal mass for the active region, and can increase efficiency when heating the active region.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: August 9, 2022
    Assignee: OpenLight Photonics, Inc.
    Inventors: Jonathan Edgar Roth, Erik Norberg
  • Patent number: 11411644
    Abstract: A hybrid automated testing equipment (ATE) system can simultaneously test electrical and optical components of a device under test, such as an optical transceiver. The device under test can be a multilane optical transceiver that transmits different channels of data on different lanes. The hybrid ATE system can include one or more light sources and optical switches in an optical test lane selector to selectively test and calibrate each optical and electrical components of each lane of the device under test.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: August 9, 2022
    Assignee: OpenLight Photonics, Inc.
    Inventor: Steven William Keck