Patents Assigned to OPTITUNE OY
  • Patent number: 11634610
    Abstract: The present invention provides a method for covering a substrate, and includes the following operations: (a) admixing at least four different silane monomers and at least one bi-silane to a first solvent(s) to form a mixture, with the proviso that at least one of the silane monomers or the bi-silane comprises an active group capable of achieving cross-linking to adjacent siloxane polymer chains of the siloxane polymer composition; (b) subjecting the mixture to an acid treatment so that the silane monomers are at least partially hydrolysed, and the hydrolysed silane monomers, the silane monomers and the bi-silane are at least partially polymerized and cross-linked; (c) optionally changing the first solvent to a second solvent; and (d) subjecting the mixture to further cross-linking of the siloxane polymer to achieve a predetermined degree of cross-linking, depositing the siloxane polymer composition on the substrate, and optionally curing the deposited siloxane polymer composition.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: April 25, 2023
    Assignee: OPTITUNE Oy
    Inventors: Ari Karkkainen, Milja Hannu-Kuure, Admir Hadzic, Jarkko Leivo, Henna Jarvitalo, Rauna-Leena Kuvaja, Graeme Gordon, Matti Pesonen
  • Publication number: 20220010172
    Abstract: The present invention provides a method for covering a substrate, and includes the following operations: (a) admixing at least four different silane monomers and at least one bi-silane to a first solvent(s) to form a mixture, with the proviso that at least one of the silane monomers or the bi-silane comprises an active group capable of achieving cross-linking to adjacent siloxane polymer chains of the siloxane polymer composition; (b) subjecting the mixture to an acid treatment so that the silane monomers are at least partially hydrolysed, and the hydrolysed silane monomers, the silane monomers and the bi-silane are at least partially polymerized and cross-linked; (c) optionally changing the first solvent to a second solvent; and (d) subjecting the mixture to further cross-linking of the siloxane polymer to achieve a predetermined degree of cross-linking, depositing the siloxane polymer composition on the substrate, and optionally curing the deposited siloxane polymer composition.
    Type: Application
    Filed: September 20, 2021
    Publication date: January 13, 2022
    Applicant: OPTITUNE Oy
    Inventors: Ari KARKKAINEN, Milja HANNU-KUURE, Admir HADZIC, Jarkko LEIVO, Henna JARVITALO, Rauna-Leena KUVAJA, Graeme GORDON, Matti PESONEN
  • Patent number: 11127864
    Abstract: A method of producing a photovoltaic cell having a cover, comprising the steps of: providing a photovoltaic cell which comprises a crystalline silicon substrate; providing a transparent substrate; forming an antireflective coating on said transparent substrate to provide a coated transparent substrate; and covering the photovoltaic cell with said coated transparent substrate. The antireflective coating is a hybrid organic-inorganic material having an inorganic portion comprising silicon, oxygen and carbon, and further comprising an organic portion with organic groups connected to the inorganic portion. Methods of producing solar panels, coated glass substrates as well as antireflection coatings are disclosed as well as novel compositions of hybrid organic-inorganic materials.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: September 21, 2021
    Assignee: Optitune Oy
    Inventors: Ari Kärkkäinen, Milja Hannu-Kuure, Admir Hadzic, Jarkko Leivo, Henna Järvitalo, Rauna-Leena Kuvaja
  • Patent number: 10836675
    Abstract: A computer or personal communication device or a similar device, comprising a CPU; and a display; wherein the display comprises; an array of optical elements; a touch sensor; and a glass cover having a coating that is oleophobic. The coating of the glass is a polymer having silicon, oxygen and carbon in the backbone. Optionally it may comprise fluorine. The coating has a water contact angle of 65 or more, an oil contact angle of 20 degrees or more, and a pencil hardness of 7H or more. Thus, the coating combines properties of hydro-and oleophobicity and hardness.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: November 17, 2020
    Assignee: OPTITUNE Oy
    Inventors: Jarkko Leivo, Admir Hadzic, Milja Hannu-Kuure, Ari Karkkainen, Henna Jaervitalo, Rauna-Leena Kuvaja, Matti Pesonen
  • Patent number: 10693021
    Abstract: A method of passivating a silicon substrate for use in a photovoltaic device, comprising providing a silicon substrate having a bulk and exhibiting a front surface and a rear surface, and forming by liquid phase application a dielectric layer on at least said rear surface. The dielectric layer formed at the rear surface is capable of acting as a reflector to enhance reflection of light into the bulk of the silicon substrate, and the dielectric layer is capable of releasing hydrogen into the bulk as well as onto a surface of the silicon substrate in order to provide hydrogenation and passivation. The present invention provides an inexpensive, low cost method of improving the electrical and/or optical performance of photovoltaic devices through the application of coating chemicals onto the backside of the silicon substrate.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: June 23, 2020
    Assignee: OPTITUNE OY
    Inventors: Ari Kärkkäinen, Milja Hannu-Kuure, Henna Järvitalo, Paul Williams, Jarkko Leivo, Admir Hadzic, Jianhui Wang