Patents Assigned to OSRAM OLED GmbH
  • Patent number: 11867617
    Abstract: In an embodiment a beam-guiding cavity structure includes at least one first curved surface, one second curved surface and one third curved surface spanning a cavity, the first-third curved surfaces respectively having at least one first focal point and one second focal point, wherein the cavity is configured such that substantially no distance is laterally formed between the first focal point of the first curved surface and the second focal point of the second curved surface, wherein the cavity is further configured such that substantially no distance is laterally formed between the first focal point of the second curved surface and the second focal point of the third curved surface, wherein the first focal point of the second curved surface is arranged next to a connecting line of the first and second focal points of the first curved surface, wherein the first focal point of the third curved surface is arranged next to a connecting line of the first and second focal points of the second curved surface, and
    Type: Grant
    Filed: September 2, 2019
    Date of Patent: January 9, 2024
    Assignee: OSRAM OLED GmbH
    Inventor: Farhang Ghasemi Afshar
  • Patent number: 11870214
    Abstract: In one embodiment the semiconductor laser comprises a carrier and an edge-emitting laser diode which is mounted on the carrier and which comprises an active zone for generating a laser radiation and a facet with a radiation exit region. The semiconductor laser further comprises a protective cover, preferably a lens for collimation of the laser radiation. The protective cover is fastened to the facet and to a side surface of the carrier by means of an adhesive. A mean distance between a light entrance side of the protective cover and the facet is at most 60 ?m. The semiconductor laser is configured to be operated in a normal atmosphere without additional gas-tight encapsulation.
    Type: Grant
    Filed: October 21, 2022
    Date of Patent: January 9, 2024
    Assignee: OSRAM OLED GMBH
    Inventors: Jörg Erich Sorg, Harald König, Alfred Lell, Florian Peskoller, Karsten Auen, Roland Schulz, Herbert Brunner, Frank Singer, Roland Hüttinger
  • Patent number: 11855245
    Abstract: An optoelectronic semiconductor element may include an optoelectronic semiconductor chip. The optoelectronic semiconductor chip may include a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type, a first contact element connected to the first semiconductor layer in an electrically conductive manner, and a second contact element connected to the second semiconductor layer in an electrically conductive manner. The first semiconductor layer and the second semiconductor layer are arranged one above the other to form a layer stack. The first semiconductor layer to where the second semiconductor layer is exposed. The first contact element is arranged over the first semiconductor layer, and the second contact element is arranged over the first semiconductor layer.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: December 26, 2023
    Assignee: Osram OLED GmbH
    Inventors: Korbinian Perzlmaier, Alexander F. Pfeuffer, Kerstin Neveling
  • Patent number: 11851596
    Abstract: A lighting device is specified. The lighting device comprises a phosphor having the general molecular formula (MA)a(MB)b(MC)c(MD)d(TA)e(TB)f(TC)g(TD)h(TE)i(TF)j(XA)k(XB)l(XC)m(XD)n:E. In this case, MA is selected from a group of monovalent metals, MB is selected from a group of divalent metals, MC is selected from a group of trivalent metals, MD is selected from a group of tetravalent metals, TA is selected from a group of monovalent metals, TB is selected from a group of divalent metals, TC is selected from a group of trivalent metals, TD is selected from a group of tetravalent metals, TE is selected from a group of pentavalent elements, TF is selected from a group of hexavalent elements, XA is selected from a group of elements which comprises halogens, XB is selected from a group of elements which comprises O, S and combinations thereof, XC=N and XD=C and E=Eu, Ce, Yb and/or Mn. The following furthermore hold true: a+b+c+d=t; e+f+g+h+i+j=u; k+l+m+n=v; a+2b+3c+4d+e+2f+3g+4h+5i+6j?k?2l?3m?4n=w; 0.8?t?1; ?3.
    Type: Grant
    Filed: June 10, 2022
    Date of Patent: December 26, 2023
    Assignee: OSRAM OLED GmbH
    Inventors: Markus Seibald, Simon Peschke, Gregor Hoerder, Gina Maya Achrainer, Klaus Wurst, Dominik Baumann, Tim Fiedler, Stefan Lange, Hubert Huppertz, Daniel Dutzler, Thorsten Schroeder, Daniel Bichler, Gudrun Plundrich
  • Patent number: 11848406
    Abstract: A radiation-emitting semiconductor device (1) is specified, comprising a semiconductor body (2) having an active region (20) provided for generating radiation, a carrier (3) on which the semiconductor body is arranged and an optical element (4), wherein the optical element is attached to the semiconductor body by a direct bonding connection. Furthermore, a method for producing of radiation-emitting semiconductor devices is specified.
    Type: Grant
    Filed: March 2, 2022
    Date of Patent: December 19, 2023
    Assignee: OSRAM OLED GMBH
    Inventors: Roland Heinrich Enzmann, Hubert Halbritter, Martin Rudolf Behringer
  • Patent number: 11837688
    Abstract: In an embodiment a pixel for a multi-pixel LED module includes a first light-emitting semiconductor chip having a first upper chip side and a first lead-frame section having a first upper side, a first contacting protrusion and a second contacting protrusion, wherein the first contacting protrusion and the second contacting protrusion extend from the first upper side, and wherein the first light-emitting semiconductor chip is embedded in an electrically insulating material such that the first upper side is covered by the electrically insulating material and the first upper chip side and the contacting protrusions are exposed.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: December 5, 2023
    Assignee: OSRAM OLED GmbH
    Inventor: Michael Zitzlsperger
  • Patent number: 11837844
    Abstract: A method for singulating semiconductor components (20) is specified, said method comprising the steps of providing a carrier (21), applying at least two semiconductor chips (22) on the carrier (21), etching at least one break nucleus (23) at a side of the carrier (21) facing the semiconductor chips (22), and singulating at least two semiconductor components (20) by breaking the carrier (21) along the at least one break nucleus (23). The at least one break nucleus (23) extends at least in places in a vertical direction (z), the vertical direction (z) being perpendicular to a main extension plane of the carrier (21), and the at least one break nucleus (23) is arranged between the two semiconductor chips (22) in a lateral direction (x), the lateral direction (x) being parallel to the main extension plane of the carrier (21).
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: December 5, 2023
    Assignee: OSRAM OLED GMBH
    Inventors: John Brückner, Urs Heine, Sven Gerhard, Lars Nähle, Andreas Löffler, André Somers
  • Publication number: 20230387354
    Abstract: In one embodiment, the optoelectronic semiconductor chip comprises a semiconductor layer sequence with an active zone for generating radiation with a wavelength of maximum intensity L. A mirror comprises a cover layer. The cover layer is made of a material transparent to the radiation and has an optical thickness between 0.5 L and 3 L inclusive. The cover layer is followed in a direction away from the semiconductor layer sequence by between inclusive two and inclusive ten intermediate layers of the mirror. The intermediate layers alternately have high and low refractive indices. An optical thickness of at least one of the intermediate layers is not equal to L/4. The intermediate layers are followed in the direction away from the semiconductor layer sequence by at least one metal layer of the mirror as a reflection layer.
    Type: Application
    Filed: August 10, 2023
    Publication date: November 30, 2023
    Applicant: OSRAM OLED GmbH
    Inventors: Anna Strozecka-Assig, Johannes Saric
  • Patent number: 11824142
    Abstract: A radiation-emitting component (1) is specified with a carrier (2) having a cavity (9), a radiation-emitting semiconductor chip (3) which is arranged on a bottom surface delimiting the cavity (9) and which is configured to generate primary electromagnetic radiation, and a first reflector layer (6) arranged above a top surface of the semiconductor chip (3), wherein the carrier (2) is transparent in places to the primary electromagnetic radiation, and the semiconductor chip (3) is spaced apart from at least one side surface delimiting the cavity (9).
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: November 21, 2023
    Assignee: OSRAM OLED GmbH
    Inventors: Luca Haiberger, Sam Chou
  • Patent number: 11824147
    Abstract: In an embodiment a component includes a carrier, at least one optoelectronic part arranged on the carrier, the optoelectronic part configured to emit electromagnetic radiation, a frame arranged on the carrier and enclosing a part space, wherein the optoelectronic part is arranged in the part space, and wherein the frame comprises a reflector, and a lens arranged on the frame and at least partially covering an opening of the part space, wherein the reflector is configured to direct the electromagnetic radiation onto the lens, wherein the lens is configured to direct the electromagnetic radiation of the optoelectronic part, and wherein the lens comprises at least a partial pyramidal-shaped section on a first side face facing toward the optoelectronic part.
    Type: Grant
    Filed: August 18, 2021
    Date of Patent: November 21, 2023
    Assignee: OSRAM OLED GmbH
    Inventor: Claus Jäger
  • Patent number: 11810845
    Abstract: Carrier with an electrically insulating base material, electrically conductive through-connections and a thermal connection element. The through-connections and the thermal connection element are each completely surrounded by the base material in the lateral direction, the thermal connection element and the through-connections completely penetrating the base material perpendicularly to the main extension plane of the carrier, and the thermal connection element being formed with a material which has a thermal conductivity of at least 200 W/(m K).
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: November 7, 2023
    Assignee: OSRAM OLED GMBH
    Inventors: Jörg Erich Sorg, Konrad Wagner, Michael Förster, Josef Hirn
  • Patent number: 11804579
    Abstract: In an embodiment a method for manufacturing an optoelectronic semiconductor device includes providing a semiconductor body having an active region configured to generate electromagnetic radiation and a coupling-out surface along a main radiation direction, forming a mask layer having a plurality of recesses on the coupling-out surface on the semiconductor body, depositing metallic separators in the recesses and applying a wavelength conversion element to the coupling-out surface of the semiconductor body such that the metallic separators are at least partially embedded therein.
    Type: Grant
    Filed: March 8, 2022
    Date of Patent: October 31, 2023
    Assignee: OSRAM OLED GmbH
    Inventors: Britta Göötz, Norwin von Malm
  • Patent number: 11804696
    Abstract: A semiconductor laser (1) is provided that includes a semiconductor layer sequence in which an active zone for generating laser radiation is located. A ridge waveguide is formed as an elevation from the semiconductor layer sequence. An electrical contact layer is located directly on the ridge waveguide. A metallic electrical connection region is located directly on the contact layer and is configured for external electrical connection of the semiconductor laser. A metallic breakage coating extends directly to facets of the semiconductor layer sequence and is arranged on the ridge waveguide. The breakage coating is electrically functionless and includes comprises a lower speed of sound for a breaking wave than the semiconductor layer sequence in the region of the ridge waveguide.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: October 31, 2023
    Assignee: OSRAM OLED GMBH
    Inventors: Sven Gerhard, Christoph Eichler, Alfred Lell, Muhammad Ali
  • Patent number: 11804568
    Abstract: Optoelectronic components, groups of optoelectronic components, and methods for producing a component or a plurality of optoelectronic components are provided. The method may include providing a growth substrate having a buffer layer arranged thereon. The buffer layer may be structured in such a way that it has a plurality of the openings which are spaced apart from one another in lateral directions. A plurality of semiconductor bodies may be formed in the openings, wherein in the areas of the openings, the buffer layer has subregions which are arranged in a vertical direction between the growth substrate and the semiconductor bodies. The growth substrate may be detached from the semiconductor bodies. The buffer layer may be removed at least in the areas of the subregions.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: October 31, 2023
    Assignee: Osram OLED GmbH
    Inventors: Rainer Hartmann, Clemens Vierheilig, Tobias Meyer, Andreas Rueckerl, Tilman Schimpke, Michael Binder
  • Patent number: 11799058
    Abstract: In one embodiment, the optoelectronic semiconductor chip comprises a semiconductor layer sequence with an active zone for generating radiation with a wavelength of maximum intensity L. A mirror comprises a cover layer. The cover layer is made of a material transparent to the radiation and has an optical thickness between 0.5 L and 3 L inclusive. The cover layer is followed in a direction away from the semiconductor layer sequence by between inclusive two and inclusive ten intermediate layers of the mirror. The intermediate layers alternately have high and low refractive indices. An optical thickness of at least one of the intermediate layers is not equal to L/4. The intermediate layers are followed in the direction away from the semiconductor layer sequence by at least one metal layer of the mirror as a reflection layer.
    Type: Grant
    Filed: July 13, 2022
    Date of Patent: October 24, 2023
    Assignee: OSRAM OLED GMBH
    Inventors: Anna Strozecka-Assig, Johannes Saric
  • Patent number: 11784062
    Abstract: The invention relates to a method for producing optoelectronic components. The invention comprises: provision of a metal substrate, the substrate having a front side and a rear side opposite the front side; front-side removal of substrate material such that the substrate comprises substrate sections protruding in the region of the front side and recesses arranged there between; formation of a plastic body adjacent to substrate sections; arrangement of optoelectronic semiconductor chips on substrate sections; rear-side removal of substrate material in the region of the recesses, such that the substrate is structured into separate substrate sections; and performance of a separation process. The plastic body is divided into separate substrate sections and individual optoelectronic components with at least one optoelectronic semiconductor chip are formed. The invention also relates to an optoelectronic component.
    Type: Grant
    Filed: November 23, 2018
    Date of Patent: October 10, 2023
    Assignee: Osram OLED GmbH
    Inventors: Thomas Schwarz, Andreas Plössl, Jörg Sorg
  • Patent number: 11774555
    Abstract: Provided is a measuring system (1), which comprises a sender unit (10) with at least one individually operable LED lighting unit (12) with a luminous area which has a characteristic longitudinal extent (107) of less than or equal to 100 ?m and/or a surface area of less than or equal to 104 ?m2, wherein the LED lighting unit (12) is configured to emit at least one light pulse as a sender signal (11) during operation, and comprises the one receiver unit (20) with at least one detector unit (22) for receiving a return signal (21), which comprises at least a part of the sender signal (11) reflected by an external object. Furthermore, use of at least one individually operable LED lighting unit as a sender unit in a measuring system, a method for operating a measuring system and a lighting source having a measuring system are provided.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: October 3, 2023
    Assignee: OSRAM OLED GMBH
    Inventors: Hubert Halbritter, Stefan Groetsch
  • Patent number: 11764330
    Abstract: In an embodiment, an optoelectronic semiconductor component includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type, wherein a respective semiconductor material of the first and second semiconductor layers are each a compound semiconductor material including a first, a second and a third composition element, and a second contact region configured to electrically contact the second semiconductor layer, wherein the first semiconductor layer is patterned and arranged over the second semiconductor layer, wherein the second contact region is arranged between patterned regions of the first semiconductor layer, wherein the second contact region comprises a second metallic contact layer and a semiconductor contact layer between the second metallic contact layer and the second semiconductor layer, wherein a semiconductor material of the semiconductor contact layer includes the first, second and third composition elements, and wherein a concentration
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: September 19, 2023
    Assignee: OSRAM OLED GmbH
    Inventors: Mohammad Tollabi Mazraehno, Mariel Grace Jama, Hans-Jürgen Lugauer, Alexander Pfeuffer
  • Patent number: 11757065
    Abstract: A light-emitting component a first layer stack configured to generate light, at least one additional layer stack configured to generate light, where each of the first layer stack and the at least one additional layer stack are separately drivable from one another and where an auxiliary structure is arranged between the first layer stacks and the at least one additional layer stacks.
    Type: Grant
    Filed: September 28, 2021
    Date of Patent: September 12, 2023
    Assignee: OSRAM OLED GmbH
    Inventors: Daniel Riedel, Andreas Rausch, Ulrich Niedermeier
  • Patent number: 11749959
    Abstract: The invention relates to a semiconductor laser including a carrier, an edge-emitting laser diode which is arranged on the carrier and which has an active zone for generating laser radiation and a facet with a radiation exit area, an optical element which covers the facet, a connecting material which is arranged between the optical element and the facet, a molded body which covers the laser diode and the optical element at least in places, wherein the optical element is at least partially transparent to the laser radiation emitted by the laser diode during operation, and the optical element is designed to change the main propagation direction of the laser radiation entering the optical element during operation.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: September 5, 2023
    Assignee: OSRAM OLED GMBH
    Inventors: Jörg Erich Sorg, Frank Singer, Christoph Koller