Patents Assigned to Perceptia IP Pty Ltd
  • Patent number: 10944412
    Abstract: Methods and circuits are provided for range extension of a phase-locked loop (PLL). The PLL uses a phase subtractor with a limited unextended range. It also includes first and second registers and combinatorial logic. The phase subtractor calculates the current phase difference. The first register stores the previous phase difference. The combinatorial logic determines, from the current phase difference and the previous phase difference, if a range excursion occurs, and if it is upward or downward. When an upward excursion occurs, the value in the second register is incremented. When a downward excursion occurs, the value of the second register is decremented. The bits in the second register are combined with the bits of the current phase difference to obtain an extended current phase difference.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: March 9, 2021
    Assignee: Perceptia IP Pty Ltd
    Inventor: Julian Jenkins
  • Patent number: 10505556
    Abstract: A PLL has a controlled oscillator with a limited frequency range. It has a phase accumulator and a phase predictor whose ranges are limited to a value K related to their bit width. K is less than the ratio of the maximum output frequency and the minimum reference frequency. The PLL locks the output frequency to a value higher than the FCW times the reference frequency. The PLL includes a means for setting the output frequency to a target frequency before achieving final lock. The PLL may have a lock detector. After acquiring lock, the PLL may reduce the bit width and K value, for example by cutting power to or switching off some of the bits, or by switching off slow counters in a multi-counter system.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: December 10, 2019
    Assignee: Perceptia IP Pty Ltd
    Inventor: Julian Jenkins
  • Patent number: 10505549
    Abstract: A PLL includes a controlled oscillator, a phase accumulator to measure the controlled oscillator output phase, a phase predictor to calculate the required output phase, and a phase subtractor to calculate the phase difference or phase error. The phase accumulator includes a fast counter and a low-power counter, and two sets of corresponding latches. The fast counter counts cycles of the controlled oscillator clock signal, and the low-power counter counts carry signals from the fast counter. The low-power counter represents one or more most significant bits of the integer part of the measured phase, and the fast counter represents the remaining bits. The phase accumulator may further include a delay line, second latches, and a delay line decoder to measure a fractional part of the phase. A calibration feedback loop may keep the number of delay line steps per output clock pulse known and stable.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: December 10, 2019
    Assignee: Perceptia IP Pty Ltd
    Inventor: Julian Jenkins
  • Publication number: 20190356317
    Abstract: A PLL includes a controlled oscillator, a phase accumulator to measure the controlled oscillator output phase, a phase predictor to calculate the required output phase, and a phase subtractor to calculate the phase difference or phase error. The phase accumulator includes a fast counter and a low-power counter, and two sets of corresponding latches. The fast counter counts cycles of the controlled oscillator clock signal, and the low-power counter counts carry signals from the fast counter. The low-power counter represents one or more most significant bits of the integer part of the measured phase, and the fast counter represents the remaining bits. The phase accumulator may further include a delay line, second latches, and a delay line decoder to measure a fractional part of the phase. A calibration feedback loop may keep the number of delay line steps per output clock pulse known and stable.
    Type: Application
    Filed: May 15, 2019
    Publication date: November 21, 2019
    Applicant: Perceptia IP Pty Ltd
    Inventor: Julian Jenkins
  • Publication number: 20190356323
    Abstract: A PLL has a controlled oscillator with a limited frequency range. It has a phase accumulator and a phase predictor whose ranges are limited to a value K related to their bit width. K is less than the ratio of the maximum output frequency and the minimum reference frequency. The PLL locks the output frequency to a value higher than the FCW times the reference frequency. The PLL includes a means for setting the output frequency to a target frequency before achieving final lock. The PLL may have a lock detector. After acquiring lock, the PLL may reduce the bit width and K value, for example by cutting power to or switching off some of the bits, or by switching off slow counters in a multi-counter system.
    Type: Application
    Filed: May 15, 2019
    Publication date: November 21, 2019
    Applicant: Perceptia IP Pty Ltd
    Inventor: Julian Jenkins
  • Publication number: 20190356324
    Abstract: A PLL has a frequency comparator that is active during lock-in. It outputs a signal related to the difference between the oscillator frequency and a target frequency. It captures an initial phase and observes change in phase relative to the initial phase. Two ways of capturing the initial phase are provided. The frequency comparator can provide input signals for the loop filter and make the PLL act as a frequency-locked loop during lock-in. Alternatively, it can provide input signals for a search controller that may perform a binary or other search. The frequency comparator may wait one or more cycles of the reference clock signal to reduce noise, or it may set a threshold to eliminate some noise. It may signal that the oscillator frequency equals the target frequency when the threshold has not been exceeded after a timeout. The search controller may directly or indirectly control the PLL's oscillator.
    Type: Application
    Filed: May 15, 2019
    Publication date: November 21, 2019
    Applicant: Perceptia IP Pty Ltd
    Inventor: Julian Jenkins
  • Publication number: 20190356318
    Abstract: A PLL includes a controlled oscillator, a phase accumulator to measure the controlled oscillator output phase, a phase predictor to calculate the required output phase, and a phase subtractor to calculate the phase difference or phase error. The phase accumulator includes a counter whose output sequence changes only one bit per counted controlled oscillator output cycle, such as a Gray counter. It further includes a register or latches, which sample(s) the counter output value upon receiving a reference clock pulse. The latches output value represents the measured phase. A binary encoder, such as a Gray-to-binary converter, may translate the measured phase to a binary number. The phase accumulator may further include a delay line, second latches, and a delay line decoder to measure a fractional part of the phase. A calibration feedback loop may keep the number of delay line steps per output clock pulse known and stable.
    Type: Application
    Filed: May 15, 2019
    Publication date: November 21, 2019
    Applicant: Perceptia IP Pty Ltd
    Inventor: Julian Jenkins
  • Publication number: 20190356319
    Abstract: Methods and circuits are provided for range extension of a phase-locked loop (PLL). The PLL uses a phase subtractor with a limited unextended range. It also includes first and second registers and combinatorial logic. The phase subtractor calculates the current phase difference. The first register stores the previous phase difference. The combinatorial logic determines, from the current phase difference and the previous phase difference, if a range excursion occurs, and if it is upward or downward. When an upward excursion occurs, the value in the second register is incremented. When a downward excursion occurs, the value of the second register is decremented. The bits in the second register are combined with the bits of the current phase difference to obtain an extended current phase difference.
    Type: Application
    Filed: May 15, 2019
    Publication date: November 21, 2019
    Applicant: Perceptia IP Pty Ltd
    Inventor: Julian Jenkins
  • Patent number: 10348315
    Abstract: A phase-locked loop (PLL) has an oscillator, a counter and a register to sample the oscillator phase as an integer number. A phase predictor uses a fractional-N frequency control word (FCW) to calculate a predicted phase as an integer number. The integer difference between the sampled phase and the predicted phase is used as loop filter input, to generate an oscillator control signal that adjusts the oscillator frequency. The phase predictor may provide noise shaping, for example via a MASH modulator. A first sleep mode control signal blocks a reference clock and feedback of the oscillator clock to the counter. It may also freeze loop filter parameters and block the output clock. A second sleep mode control signal may stop the oscillator.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: July 9, 2019
    Assignee: Perceptia IP Pty Ltd
    Inventors: André Grouwstra, Julian Jenkins
  • Patent number: 10262985
    Abstract: A block of logic gates has MOS transistors whose body terminals are connected with a body voltage rail and whose source terminals are connected with a logic reference voltage rail. The logic reference voltage rail is connected to the body voltage rail via a resistor. The resistor creates a negative feedback loop for leakage currents that stabilizes a reverse body bias voltage and reduces the influence of temperature, voltage, and process variations. The block may be NMOS, PMOS, or CMOS. In the case of CMOS, there are two body voltage rails, powered by a voltage source, two logic reference voltage rails, and two resistors. The reverse body bias voltages over the two resistors may be stabilized by decoupling capacitors. The two resistors may be trimmable. The resistors may be calibrated such that leakage currents are at a minimum value and the logic gates can switch just fast enough.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: April 16, 2019
    Assignee: Perceptia IP Pty Ltd
    Inventors: Timothy Robins, Julian Jenkins