Patents Assigned to Pfenex Inc.
  • Patent number: 11377661
    Abstract: Provided herein are methods of production of recombinant Erwinia asparaginase. Methods herein produce asparaginase having high expression levels in the periplasm or the cytoplasm of the host cell having activity comparable to commercially available asparaginase preparations.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: July 5, 2022
    Assignee: Pfenex Inc.
    Inventors: Russell J. Coleman, Torben Bruck
  • Patent number: 11046964
    Abstract: Provided herein are methods of production of recombinant E. coli asparaginase. Methods herein allow production of asparaginase in Pseudomonadales host cells at high expression levels and having activity comparable to commercially available asparaginase preparations.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: June 29, 2021
    Assignee: Pfenex Inc.
    Inventors: Russell J. Coleman, Torben Bruck
  • Patent number: 10981968
    Abstract: The present invention relates to the field of medicine, in particular, to the production of large amounts of a soluble recombinant polypeptide as part of a fusion protein comprising an N-terminal fusion partner linked to the polypeptide of interest.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: April 20, 2021
    Assignee: Pfenex Inc.
    Inventors: Diane M. Retallack, Adam Chapman, Torben R. Bruck, Hongfan Jin
  • Patent number: 10787671
    Abstract: Provided herein are methods of production of recombinant Erwinia asparaginase. Methods herein produce asparaginase having high expression levels in the periplasm or the cytoplasm of the host cell having activity comparable to commercially available asparaginase preparations.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: September 29, 2020
    Assignee: Pfenex Inc.
    Inventors: Russell J. Coleman, Torben Bruck
  • Patent number: 10689640
    Abstract: The present invention provides an array for rapidly identifying a host cell population capable of producing a heterologous recombinant protein with improved yield and/or quality. The array comprises one or more host cell populations that have been genetically modified to increase the expression of one or more target genes involved in protein production, decrease the expression of one or more target genes involved in protein degradation, or both. One or more of the strains in the array may express the heterologous recombinant protein of interest in a periplasm compartment or may secrete the heterologous recombinant protein extracellularly through an outer cell wall. The strain arrays are useful for screening for improved expression of any protein of interest including therapeutic proteins, hormones, growth factors, extracellular receptors or ligands, proteases, kinases, blood proteins, chemokines, cytokines, antibodies and the like.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: June 23, 2020
    Assignee: Pfenex Inc.
    Inventors: Diane M. Retallack, Charles H. Squires, Thomas M. Ramseier, Russell J. Coleman, Jane C. Schneider, Charles D. Hershberger
  • Patent number: 10662433
    Abstract: Provided herein are methods of production of recombinant E. coli asparaginase. Methods herein allow production of asparaginase in Pseudomonadales host cells at high expression levels and having activity comparable to commercially available asparaginase preparations.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: May 26, 2020
    Assignee: Pfenex Inc.
    Inventors: Russell J. Coleman, Torben Bruck
  • Patent number: 10118956
    Abstract: The present invention relates to the field of medicine, in particular, to the production of large amounts of a soluble recombinant polypeptide as part of a fusion protein comprising an N-terminal fusion partner linked to the polypeptide of interest.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: November 6, 2018
    Assignee: PFENEX INC.
    Inventors: Diane M. Retallack, Adam Chapman, Torben R. Bruck, Hongfan Jin
  • Patent number: 10041102
    Abstract: The invention is a process for improved production of a recombinant mammalian protein by expression in a Pseudomonad, particularly in a Pseudomonas fluorescens organism. The process improves production of mammalian proteins, particularly human or human-derived proteins, over known expression systems such as E. coli in comparable circumstances. Processes for improved production of isolated mammalian, particularly human, proteins are provided.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: August 7, 2018
    Assignee: PFENEX INC.
    Inventors: Diane M. Retallack, Charles H. Squires, David C. Watkins, Stacey L. Lee, Frank H. Gaertner, Robert Shutter
  • Patent number: 9849177
    Abstract: The present invention relates to processes for purifying high-quality recombinant Plasmodium falciparum circumsporozoite protein at high yields.
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: December 26, 2017
    Assignee: PFENEX INC.
    Inventors: Jeffrey Allen, Ryan Haverstock
  • Patent number: 9708616
    Abstract: Provided herein are methods and compositions for expression of a nucleic acid construct comprising nucleic acids encoding a) a recombinant polypeptide, and b) a prototrophy-restoring enzyme in a host cell that is auxotrophic for at least one metabolite. In various embodiments, the host cell is auxotrophic for a nitrogenous base compound or an amino acid. The invention involves introducing an analog into the growth media for the host cell such that the analog is incorporated into the recombinant polypeptide or a nucleic acid coding sequence thereof. In various embodiments, the compositions and methods disclosed herein result in improved recombinant protein expression compared to expression of recombinant protein in an antibiotic selection system, or compared to expression of the recombinant protein in an expression system that lacks a metabolite analog.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: July 18, 2017
    Assignee: PFENEX, INC.
    Inventors: Diane M. Retallack, Lawrence C. Chew, Charles H. Squires
  • Patent number: 9611499
    Abstract: The present invention relates to the field of recombinant protein production in bacterial hosts. It further relates to extraction of soluble, active recombinant protein from an insoluble fraction without the use of denaturation and without the need for a refolding step. In particular, the present invention relates to a production process for obtaining high levels a soluble recombinant Type 1 interferon protein from a bacterial host.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: April 4, 2017
    Assignee: PFENEX INC.
    Inventors: Jeffrey Allen, Ping-Hua Feng, Anant Patkar, Keith L. Haney, Lawrence Chew, Lei Lei Phokham Sengchanthalangsy
  • Patent number: 9580719
    Abstract: The present invention provides an array for rapidly identifying a host cell population capable of producing a heterologous protein with improved yield and/or quality. The array comprises one or more host cell populations that have been genetically modified to increase the expression of one or more target genes involved in protein production, decrease the expression of one or more target genes involved in protein degradation, or both. One or more of the strains in the array may express the heterologous protein of interest in a periplasm compartment or may secrete the heterologous protein extracellularly through an outer cell wall. The strain arrays are useful for screening for improved expression of any protein of interest including therapeutic proteins, hormones, growth factors, extracellular receptors or ligands, proteases, kinases, blood proteins, chemokines, cytokines, antibodies and the like.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: February 28, 2017
    Assignee: PFENEX, INC.
    Inventors: Diane M. Retallack, Charles H. Squires, Thomas M. Ramseier, Russell J. Coleman, Jane C. Schneider, Charles D. Hershberger
  • Patent number: 9458487
    Abstract: The invention is a process for improved production of a recombinant mammalian protein by expression in a Pseudomonad, particularly in a Pseudomonas fluorescens organism. The process improves production of mammalian proteins, particularly human or human-derived proteins, over known expression systems such as E. coli in comparable circumstances Processes for improved production of isolated mammalian, particularly human, proteins are provided.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: October 4, 2016
    Assignee: PFENEX, INC.
    Inventors: Diane M. Retallack, Charles H. Squires, David C. Watkins, Stacey L. Lee, Frank H. Gaertner, Robert Shutter
  • Patent number: 9453251
    Abstract: The invention is a process for improved production of a recombinant mammalian protein by expression in a Pseudomonad, particularly in a Pseudomonas fluorescens organism. The process improves production of mammalian proteins, particularly human or human-derived proteins, over known expression systems such as E. coli in comparable circumstances Processes for improved production of isolated mammalian, particularly human, proteins are provided.
    Type: Grant
    Filed: January 18, 2005
    Date of Patent: September 27, 2016
    Assignee: PFENEX INC.
    Inventors: Diane M. Retallack, Charles H. Squires, David C. Watkins, Stacey L. Lee, Frank H. Gaertner, Robert Shutter
  • Patent number: 9394571
    Abstract: The present invention provides an array for rapidly identifying a host cell population capable of producing a heterologous protein with improved yield and/or quality. The array comprises one or more host cell populations that have been genetically modified to increase the expression of one or more target genes involved in protein production, decrease the expression of one or more target genes involved in protein degradation, or both. One or more of the strains in the array may express the heterologous protein of interest in a periplasm compartment or may secrete the heterologous protein extracellularly through an outer cell wall. The strain arrays are useful for screening for improved expression of any protein of interest including therapeutic proteins, hormones, growth factors, extracellular receptors or ligands, proteases, kinases, blood proteins, chemokines, cytokines, antibodies and the like.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: July 19, 2016
    Assignee: PFENEX INC.
    Inventors: Thomas M. Ramseier, Russell J. Coleman, Jane C. Schneider, Charles D. Hershberger, Diane M. Retallack, Charles H. Squires
  • Patent number: 9243253
    Abstract: Provided herein are methods and compositions for expression of a nucleic acid construct comprising nucleic acids encoding a) a recombinant polypeptide, and b) a prototrophy-restoring enzyme in a host cell that is auxotrophic for at least one metabolite. In various embodiments, the host cell is auxotrophic for a nitrogenous base compound or an amino acid. The invention involves introducing an analogue into the growth media for the host cell such that the analogue is incorporated into the recombinant polypeptide or a nucleic acid coding sequence thereof. In various embodiments, the compositions and methods disclosed herein result in improved recombinant protein expression compared to expression of recombinant protein in an antibiotic selection system, or compared to expression of the recombinant protein in an expression system that lacks a metabolite analogue.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: January 26, 2016
    Assignee: Pfenex, Inc.
    Inventors: Diane M. Retallack, Lawrence C. Chew, Charles H. Squires
  • Patent number: 9187543
    Abstract: The present invention relates to the field of recombinant protein production in bacterial hosts. It further relates to extraction of soluble, active recombinant protein from an insoluble fraction without the use of denaturation and without the need for a refolding step. In particular, the present invention relates to a production process for obtaining high levels a soluble recombinant Type 1 interferon protein from a bacterial host.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: November 17, 2015
    Assignee: PFENEX INC.
    Inventors: Jeffrey Allen, Ping-Hua Feng, Anant Patkar, Keith L. Haney, Lawrence Chew, Lei Lei Phokham Sengchanthalangsy
  • Patent number: 9169304
    Abstract: The present invention relates to processes for purifying high-quality recombinant Plasmodium falciparum circumsporozoite protein at high yields.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 27, 2015
    Assignee: PFENEX INC.
    Inventors: Jeffrey Allen, Greg Cantin, Ryan Haverstock
  • Patent number: 9109229
    Abstract: This invention is a process for improving the production levels of recombinant proteins or peptides or improving the level of active recombinant proteins or peptides expressed in host cells. The invention is a process of comparing two genetic profiles of a cell that expresses a recombinant protein and modifying the cell to change the expression of a gene product that is upregulated in response to the recombinant protein expression. The process can improve protein production or can improve protein quality, for example, by increasing solubility of a recombinant protein.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: August 18, 2015
    Assignee: Pfenex Inc.
    Inventors: Thomas M. Ramseier, Hongfan Jin, Charles H. Squires
  • Patent number: 8906636
    Abstract: The present invention relates to the field of recombinant toxin protein production in bacterial hosts. In particular, the present invention relates to production processes for obtaining high levels of a recombinant CRM197, Diphtheria Toxin, Pertussis Toxin, Tetanus Toxoid Fragment C, Cholera Toxin B, Cholera holotoxin, and Pseudomonas Exotoxin A, from a bacterial host.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: December 9, 2014
    Assignee: Pfenex Inc.
    Inventors: Diane M. Retallack, Lawrence Chew