Patents Assigned to PicoSolve Inc.
  • Patent number: 7327302
    Abstract: An asynchronous sampling arrangement utilizes sampling of both a high speed data signal and a trigger (clock) signal. The data signal may be either an optical signal or an electrical signal. The data and trigger signals are sampled in parallel by two separate gates, the gates based on the same strobe frequency. The samples corresponding to the trigger signal are then processed through an algorithm that determines the time-base related to the sampled signal. This established time-base is then used to reconstruct the sampled version of the high data rate input signal waveform.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: February 5, 2008
    Assignee: PicoSolve Inc.
    Inventors: Mathias Westlund, Peter Andrekson
  • Patent number: 7199870
    Abstract: A system and method for providing polarization-independent optical sampling utilizes a differential group delay (DGD) element to split a sampling pulse source (SPS) into orthogonal components by controlling the state of polarization of the SPS at the DGD element input. The orthogonally-polarized sampling pulse components then each interact with the input optical signal waveform in a polarization-dependent sampling gate, creating two samples for each original sampling pulse. The generated samples are converted into the electrical domain by a photodetector with an impulse response time longer than that associated with the DGD element, resulting in a single impulse response representing the combined energy of the two samples that is independent of the state of polarization of the input optical signal waveform.
    Type: Grant
    Filed: February 10, 2005
    Date of Patent: April 3, 2007
    Assignee: PicoSolve Inc.
    Inventors: Peter Andrekson, Bengt-Erik Olsson, Mathias Westlund
  • Publication number: 20060176472
    Abstract: A system and method for providing polarization-independent optical sampling utilizes a differential group delay (DGD) element to split a sampling pulse source (SPS) into orthogonal components by controlling the state of polarization of the SPS at the DGD element input. The orthogonally-polarized sampling pulse components then each interact with the input optical signal waveform in a polarization-dependent sampling gate, creating two samples for each original sampling pulse. The generated samples are converted into the electrical domain by a photodetector with an impulse response time longer than that associated with the DGD element, resulting in a single impulse response representing the combined energy of the two samples that is independent of the state of polarization of the input optical signal waveform.
    Type: Application
    Filed: February 10, 2005
    Publication date: August 10, 2006
    Applicant: PicoSolve Inc.
    Inventors: Peter Andrekson, Bengt-Erik Olsson, Mathias Westlund