Patents Assigned to Puget Sound Blood Center
  • Patent number: 11286528
    Abstract: The present disclosure provides methods of administering chimeric and hybrid Factor VIII (FVIII) polypeptides comprising FVIII and Fc to subjects at risk of developing inhibitory FVIII immune responses, including anti-FVIII antibodies and/or cell-mediated immunity. The administration is sufficient to promote coagulation and to induce immune tolerance to FVIII. The chimeric polypeptide can comprise full-length FVIII or a FVIII polypeptide containing a deletion, e.g., a full or partial deletion of the B domain.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: March 29, 2022
    Assignees: BIOVERATIV THERAPEUTICS INC., PUGET SOUND BLOOD CENTER
    Inventors: Haiyan Jiang, Tongyao Liu, Sriram Krishnamoorthy, Neil Josephson, Glenn Pierce
  • Patent number: 10794921
    Abstract: Photonic devices, systems, and methods for detecting an analyte in a biological solution (e.g., whole blood) are provided. Representative photonic devices are optical ring resonators having nanoscale features and micron-sized diameters. Due to the compact size of these devices, many resonators can be disposed on a single substrate and tested simultaneously as a sample is passed over the devices. Typical analytes include blood cells, antibodies, and pathogens, as well as compounds indicative of the presence of blood cells or pathogens (e.g., serology). In certain embodiments, blood type can be determined through photonic sensing using a combination of direct detection of blood cells and serology. By combining the detection signals of multiple devices, the type of blood can be determined.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: October 6, 2020
    Assignees: University of Washington, Puget Sound Blood Center
    Inventors: Daniel M. Ratner, Jill M. Johnsen, James T. Kirk, José A. López, Norman D. Brault, Shaoyi Jiang
  • Patent number: 10221455
    Abstract: The present disclosure provides methods of administering chimeric and hybrid Factor VIII (FVIII) polypeptides comprising FVIII and Fc to subjects at risk of developing inhibitory FVIII immune responses, including anti-FVIII antibodies and/or cell-mediated immunity. The administration is sufficient to promote coagulation and to induce immune tolerance to FVIII. The chimeric polypeptide can comprise full-length FVIII or a FVIII polypeptide containing a deletion, e.g., a full or partial deletion of the B domain.
    Type: Grant
    Filed: January 12, 2013
    Date of Patent: March 5, 2019
    Assignees: BIOVERATIV THERAPEUTICS INC., PUGET SOUND BLOOD CENTER
    Inventors: Haiyan Jiang, Tongyao Liu, Sriram Krishnamoorthy, Neil Josephson, Glenn Pierce
  • Publication number: 20170227555
    Abstract: Photonic devices, systems, and methods for detecting an analyte in a biological solution (e.g., whole blood) are provided. Representative photonic devices are optical ring resonators having nanoscale features and micron-sized diameters. Due to the compact size of these devices, many resonators can be disposed on a single substrate and tested simultaneously as a sample is passed over the devices. Typical analytes include blood cells, antibodies, and pathogens, as well as compounds indicative of the presence of blood cells or pathogens (e.g., serology). In certain embodiments, blood type can be determined through photonic sensing using a combination of direct detection of blood cells and serology. By combining the detection signals of multiple devices, the type of blood can be determined.
    Type: Application
    Filed: February 17, 2017
    Publication date: August 10, 2017
    Applicants: University of Washington through its Center for Commercialization, Puget Sound Blood Center
    Inventors: Daniel M. Ratner, Jill M. Johnsen, James T. Kirk, José A. López, Norman D. Brault, Shaoyi Jiang
  • Patent number: 9599613
    Abstract: Photonic devices, systems, and methods for detecting an analyte in a biological solution (e.g., whole blood) are provided. Representative photonic devices are optical ring resonators having nanoscale features and micron-sized diameters. Due to the compact size of these devices, many resonators can be disposed on a single substrate and tested simultaneously as a sample is passed over the devices. Typical analytes include blood cells, antibodies, and pathogens, as well as compounds indicative of the presence of blood cells or pathogens (e.g., serology). In certain embodiments, blood type can be determined through photonic sensing using a combination of direct detection of blood cells and serology. By combining the detection signals of multiple devices, the type of blood can be determined.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: March 21, 2017
    Assignees: University of Washington through its Center for Commercialization, Puget Sound Blood Center
    Inventors: Daniel M. Ratner, Jill M. Johnsen, James T. Kirk, José A. López, Norman D. Brault, Shaoyi Jiang
  • Publication number: 20140315760
    Abstract: Photonic devices, systems, and methods for detecting an analyte in a biological solution (e.g., whole blood) are provided. Representative photonic devices are optical ring resonators having nanoscale features and micron-sized diameters. Due to the compact size of these devices, many resonators can be disposed on a single substrate and tested simultaneously as a sample is passed over the devices. Typical analytes include blood cells, antibodies, and pathogens, as well as compounds indicative of the presence of blood cells or pathogens (e.g., serology). In certain embodiments, blood type can be determined through photonic sensing using a combination of direct detection of blood cells and serology. By combining the detection signals of multiple devices, the type of blood can be determined.
    Type: Application
    Filed: July 20, 2012
    Publication date: October 23, 2014
    Applicants: PUGET SOUND BLOOD CENTER, University of Washington through its Center for Commercialization
    Inventors: Daniel M. Ratner, Jill M. Johnsen, James T. Kirk, José A. López, Norman D. Brault, Shaoyi Jiang
  • Publication number: 20140296105
    Abstract: Disclosed herein are methods, systems, mediums, and kits for use in phenotyping antibody responses via devices such as surface plasmon resonance devices. Such phentypes can include total target-specific antibody titers, quantitative isotype distribution of the target-specific antibodies, and/or epitope specificity of the target-specific antibodies. Other methods, systems, mediums, and kits are also disclosed.
    Type: Application
    Filed: October 31, 2012
    Publication date: October 2, 2014
    Applicant: Puget Sound Blood Center
    Inventors: Kathleen Pratt, Kenneth B. Lewis
  • Publication number: 20140178904
    Abstract: Compositions and methods for determining post-transfusion survival or toxicity of red blood cells and the suitability of red blood cell units for transfusion by measuring the levels of one or more markers in a red blood cell sample are provided.
    Type: Application
    Filed: August 28, 2013
    Publication date: June 26, 2014
    Applicant: Puget Sound Blood Center
    Inventor: James Charles Zimring
  • Patent number: 8691211
    Abstract: This invention relates to methods and compositions for suppressing an immune response to Factor VIII in subjects suffering from hemophilia A and having preformed inhibitor antibodies against Factor VIII, and compositions and methods that advantageously render subjects amenable to standard treatments for hemophilia A, including Factor VIII replacement therapy.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: April 8, 2014
    Assignee: Puget Sound Blood Center
    Inventor: Neil Cary Josephson
  • Patent number: 8637268
    Abstract: Novel methods are described for measuring the rate of ADAMTS13-mediated cleavage of von Willebrand Factor (VWF) multimers. Through the use of the reagent, ristocetin, the method can advantageously be performed in the absence of an applied shear stress or added denaturing agent. Also described are methods for diagnosing ADAMTS13-associated disorders and methods for providing improved treatment of those disorders by evaluating the efficacy of the treatment using the methods as described.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: January 28, 2014
    Assignee: Puget Sound Blood Center
    Inventors: Junmei Chen, Dominic W. Chung, Jose Aron Lopez
  • Patent number: 4998931
    Abstract: The immunogenicity of transfused or transplanted, allogeneic tissue is reduced by either directly exposing the tissue to ultraviolet (UV) irradiation prior to administering the tissue to the recipient or by inducing a state of tolerance in the recipient to non-UV or UV-irradiated allogeneic tissue by prior exposure to UV-irradiated allogeneic tissue.
    Type: Grant
    Filed: December 21, 1988
    Date of Patent: March 12, 1991
    Assignees: Puget Sound Blood Center, Fred Hutchinson Cancer Research Center
    Inventors: Sherrill J. Slichter, H. Joachim Deeg