Patents Assigned to PURESTREAM SERVICES, LLC
  • Patent number: 11344820
    Abstract: A system and method for concentrating wastewater with a heated gas is disclosed wherein a heated gas directed into a first wastewater heating chamber at a first velocity and a first wastewater stream is directed into the first wastewater heating chamber. A second wastewater heating chamber coupled to the first wastewater heating chamber and in fluid communication with the first wastewater heating chamber is disclosed. The wastewater streams and heated gas are propagated to optimize the water drop size within the heating chambers.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: May 31, 2022
    Assignee: Purestream Services, LLC
    Inventors: Benjamin Clegg, Neil Richardson, Ryan Mawson, Brian Busath
  • Patent number: 11338218
    Abstract: A system for concentrating wastewater with a heated gas is disclosed wherein a heated gas directed into a wastewater heating chamber having a cooling assembly for minimizing scale buildup.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: May 24, 2022
    Assignee: Purestream Services, LLC
    Inventors: Benjamin Clegg, Neil Richardson, Ryan Mawson, Brian Busath
  • Patent number: 10974161
    Abstract: A system for concentrating wastewater with a heated gas is disclosed wherein a heated gas is directed into a first wastewater heating chamber at a first velocity and a first wastewater stream is directed into the first wastewater heating chamber. A second wastewater heating chamber is coupled to the first wastewater heating chamber and in fluid communication with the first wastewater heating chamber. A second wastewater stream is directed into the second wastewater heating chamber at a velocity that is greater than the velocity of the heated gas directed into the first wastewater heating chamber.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: April 13, 2021
    Assignee: Purestream Services, LLC
    Inventors: Benjamin Clegg, Neil Richardson, Ryan Mawson, Brian Busath
  • Patent number: 10544053
    Abstract: Apparatus for removing suspended impurities from a liquid (e.g., wastewater), methods of use, and systems including such apparatus. In an embodiment, an apparatus may include a vessel defining a chamber for receiving gas induced liquid influent through an inlet, the influent including suspended impurities. A riser tube may be provided within the vessel, in fluid communication with the inlet so that liquid influent introduced into the vessel through the inlet is introduced into the riser tube. One or more coalescing members may be disposed within the riser tube. The coalescing members may be sufficiently small to be easily removable by hand, without requiring a crane. The coalescing members may be freely disposed within the riser tube, rotatable within the flow of the liquid influent, aiding the coalescing members in exhibiting some degree of “self-cleaning”, so as to be less prone to fouling and clogging.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: January 28, 2020
    Assignee: Purestream Services, LLC
    Inventors: Christopher Jahn, Christopher Sochalski, Billy Cruz
  • Patent number: 9533238
    Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: January 3, 2017
    Assignee: PURESTREAM SERVICES, LLC
    Inventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
  • Patent number: 9205347
    Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: December 8, 2015
    Assignee: PURESTREAM SERVICES, LLC
    Inventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
  • Patent number: 9044693
    Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: June 2, 2015
    Assignee: Purestream Services, LLC
    Inventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
  • Patent number: 9005404
    Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: April 14, 2015
    Assignee: Purestream Services, LLC
    Inventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
  • Patent number: 8986509
    Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: March 24, 2015
    Assignee: Purestream Services, LLC
    Inventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
  • Patent number: 8845865
    Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: September 30, 2014
    Assignee: Purestream Services, LLC
    Inventors: J. Clair Batty, Neil W. Richardson, David A. Bell, Christopher M. Miller
  • Publication number: 20130186741
    Abstract: An accelerated vapor recompression apparatus 10 converts incoming flow 35a to a concentrate 35c by developing a concentration profile 146 within a tank 30 holding a liquid 23 containing dissolved solids. The resulting curve 160 of saturation temperature of the stratified liquid 23 (such as a brine 23 or other material 23) moves away from the curve 162 corresponding to fully mixed conditions. The shift 174, 180 in saturation temperature results in increased boiling without increased energy from a heater 70 or compressor 50. A method 90, 200 of control of the system provides interventions 203, 204, 205, 206 at different levels 92, 94, 96, 98 of control, ranging from mass flows 35 to work of a compressor 50, heat from a heater 70, and a predictive processing 215 of feedback 217 for controlling commands 216 algorithmically.
    Type: Application
    Filed: January 31, 2013
    Publication date: July 25, 2013
    Applicant: PURESTREAM SERVICES, LLC
    Inventor: Purestream Services, LLC