Patents Assigned to Quantum-Si Incorporated
  • Publication number: 20240044703
    Abstract: Described herein are techniques that improve the collection and readout of charge carriers in an integrated circuit. Some aspects of the present disclosure relate to integrated circuits having pixels with a plurality of charge storage regions. Some aspects of the present disclosure relate to integrated circuits configured to substantially simultaneously collect and read out charge carriers, at least in part. Some aspects of the present disclosure relate to integrated circuits having a plurality of pixels configured to transfer charge carriers between charge storage regions within each pixel substantially at the same time. Some aspects of the present disclosure relate to integrated circuits having three or more sequentially coupled charge storage regions. Some aspects of the present disclosure relate to integrated circuits capable of increased charge transfer rates.
    Type: Application
    Filed: October 18, 2023
    Publication date: February 8, 2024
    Applicant: Quantum-Si Incorporated
    Inventors: Eric A.G. Webster, Todd Rearick, Thomas Raymond Thurston
  • Publication number: 20240035081
    Abstract: Methods of sequencing molecules based on luminescence lifetimes and/or intensities are provided. In some aspects, methods of sequencing nucleic acids involve determining the luminescence lifetimes, and optionally luminescence intensities, of a series of luminescently labeled nucleotides incorporated during a nucleic acid sequencing reaction. In some aspects, the disclosure provides compositions comprising luminescently labeled nucleotides.
    Type: Application
    Filed: September 23, 2022
    Publication date: February 1, 2024
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jeremy Lackey, Brian Reed, Xinghua Shi, Haidong Huang, David Dodd
  • Patent number: 11885744
    Abstract: Some aspects relate to integrated devices for obtaining timing and/or spectral information from incident light. In some embodiments, a pixel may include one or more charge storage regions configured to receive charge carriers generated responsive to incident photons from a light source, with charge carriers stored in the charge storage region(s) indicative of spectral and timing information. In some embodiments, a pixel may include regions having different depths, each configured to generate charge carriers responsive to incident photons. In some embodiments, a pixel may include multiple charge storage regions having different depths, and one or more of the charge storage regions may be configured to receive the incident photons and generate charge carriers therein. In some embodiments, a pixel may include an optical sorting element configured to direct at least some incident photons to one charge storage region and other incident photons to another charge storage region.
    Type: Grant
    Filed: January 14, 2021
    Date of Patent: January 30, 2024
    Assignee: Quantum-Si Incorporated
    Inventors: Gerard Schmid, Dajiang Yang, Eric A. G. Webster, Xin Wang, Todd Rearick, Changhoon Choi, Ali Kabiri, Kyle Preston
  • Patent number: 11879841
    Abstract: Apparatus and methods for analyzing single molecule and performing nucleic acid sequencing. An apparatus can include an assay chip that includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits emission energy; at least one element for directing the emission energy in a particular direction; and a light path along which the emission energy travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the assay chip. The instrument includes an excitation light source for exciting the sample in each sample well; a plurality of sensors corresponding the sample wells. Each sensor may detect emission energy from a sample in a respective sample well. The instrument includes at least one optical element that directs the emission energy from each sample well towards a respective sensor of the plurality of sensors.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: January 23, 2024
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Paul E. Glenn, Lawrence C. West, Benjamin Cipriany, Keith G. Fife
  • Publication number: 20240019370
    Abstract: An integrated circuit includes a photodetection region configured to receive incident photons. The photodetection region is configured to produce a plurality of charge carriers in response to the incident photons. The integrated circuit includes at least one charge carrier storage region. The integrated circuit also includes a charge carrier segregation structure configured to selectively direct charge carriers of the plurality of charge carriers directly into the at least one charge carrier storage region based upon times at which the charge carriers are produced.
    Type: Application
    Filed: June 6, 2023
    Publication date: January 18, 2024
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Keith G. Fife, David M. Boisvert
  • Patent number: 11875267
    Abstract: Techniques for performing a prediction task using a multi-modal statistical model configured to receive input data from multiple modalities including input data from a first modality and input data from a second modality different from the first modality.
    Type: Grant
    Filed: October 17, 2022
    Date of Patent: January 16, 2024
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Umut Eser, Michael Meyer
  • Patent number: 11869917
    Abstract: Aspects of the technology described herein relate to improved semiconductor-based image sensor designs. In some embodiments, an integrated circuit may comprise a photodetection region and a drain region electrically coupled to the photodetection region, and the photodetection region may be configured to induce an intrinsic electric field in a direction from the photodetection region to the drain region(s). In some embodiments, a charge storage region and the drain region may be positioned on a same side of the photodetection region. In some embodiments, at least one drain layer may be configured to receive incident photons and/or charge carriers via the photodetection region. In some embodiments, an integrated circuit may comprise a plurality of pixels and a control circuit configured to control a transfer of charge carriers in the plurality of pixels.
    Type: Grant
    Filed: January 14, 2021
    Date of Patent: January 9, 2024
    Assignee: Quantum-Si Incorporated
    Inventors: Eric A. G. Webster, Changhoon Choi, Dajiang Yang, Xin Wang, Todd Rearick, Kyle Preston, Ali Kabiri, Gerard Schmid
  • Publication number: 20240003811
    Abstract: Some aspects relate to an integrated circuit, comprising at least one photodetection region configured to generate charge carriers responsive to incident photons emitted from a sample, at least one charge storage region configured to receive the charge carriers from the photodetection region, and at least one controller configured to obtain information about the incident photons, the information comprising at least one member selected from the group comprising pulse duration and interpulse duration and at least one member selected from the group comprising wavelength information, luminescence lifetime information, and intensity information. In some embodiments, the information comprises at least three, four, and/or five members selected from the group comprising wavelength information, luminescence lifetime information, intensity information, pulse duration information, and interpulse duration information. In some embodiments, the information obtained may be used to identify the sample.
    Type: Application
    Filed: June 15, 2023
    Publication date: January 4, 2024
    Applicant: Quantum-Si Incorporated
    Inventors: Gerard Schmid, Dajiang Yang, Eric A.G. Webster, Xin Wang, Todd Rearick, Changhoon Choi, Ali Kabiri, Kyle Preston, Brian Reed
  • Publication number: 20240003886
    Abstract: Aspects of the disclosure provide methods and compositions for determining the identity of an analyte using molecular barcodes and single-molecule directed evolution of target biomolecules (e.g., proteins or aptamers).
    Type: Application
    Filed: June 15, 2023
    Publication date: January 4, 2024
    Applicant: Quantum-Si Incorporated
    Inventors: Marco Ribezzi-Crivellari, Andrew Griffiths, Adeline Pichard-Kostuch, Andrea Flamm, Lisanne Spenkelink, Antonius M. van Oijen
  • Publication number: 20230408411
    Abstract: An integrated circuit includes a photodetection region configured to receive incident photons. The photodetection region is configured to produce a plurality of charge carriers in response to the incident photons. The integrated circuit also includes at least one charge carrier storage region. The integrated circuit also includes a charge carrier segregation structure configured to selectively direct charge carriers of the plurality of charge carriers into the at least one charge carrier storage region based upon times at which the charge carriers are produced.
    Type: Application
    Filed: June 13, 2023
    Publication date: December 21, 2023
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Keith G. Fife, David M. Boisvert
  • Patent number: 11848531
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument. The mode-locked laser can produce sub-50-ps optical pulses at a repetition rates between 200 MHz and 50 MHz, rates suitable for massively parallel data-acquisition. The optical pulses can be used to generate a reference clock signal for synchronizing data-acquisition and signal-processing electronics of the portable instrument.
    Type: Grant
    Filed: March 16, 2022
    Date of Patent: December 19, 2023
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife, Benjamin Cipriany
  • Publication number: 20230391799
    Abstract: Aspects of the application provide compounds of formula (I): or a salt thereof, which may be useful as chromophores and/or fluorophores for labeling highly water-soluble biomolecules (e.g., proteins, polypeptides, nucleotides, or oligonucleotides).
    Type: Application
    Filed: May 2, 2023
    Publication date: December 7, 2023
    Applicant: Quantum-Si Incorporated
    Inventors: Roger Nani, Haidong Huang
  • Publication number: 20230375475
    Abstract: System and methods for analyzing single molecules and performing nucleic acid sequencing. An integrated device may include multiple pixels with sample wells configured to receive a sample, which when excited, emits radiation. The integrated device includes a surface having a trench region recessed from a portion of the surface and an array of sample wells, disposed in the trench region. The integrated device also includes a waveguide configured to couple excitation energy to at least one sample well in the array and positioned at a first distance from a surface of the trench region and at a second distance from the surface in a region separate from the trench region. The first distance is smaller than the second distance. The system also includes an instrument that interfaces with the integrated device. The instrument may include an excitation energy source for providing excitation energy to the integrated device by coupling to an excitation energy coupling region of the integrated device.
    Type: Application
    Filed: July 20, 2023
    Publication date: November 23, 2023
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Ali Kabiri, Gerard Schmid, Keith G. Fife, James Beach, Jason W. Sickler, Lawrence C. West, Paul E. Glenn, Kyle Preston, Farshid Ghasemi, Benjamin Cipriany, Jeremy Lackey
  • Publication number: 20230358958
    Abstract: Apparatus and methods relating to coupling radiation from an incident beam into a plurality of waveguides with a grating coupler are described. A grating coupler can have offset receiving regions and grating portions with offset periodicity to improve sensitivity of the grating coupler to misalignment of the incident beam.
    Type: Application
    Filed: July 20, 2023
    Publication date: November 9, 2023
    Applicant: Quantum-Si Incorporated
    Inventors: Gerard Schmid, Kyle Preston, Shannon Stewman
  • Patent number: 11808700
    Abstract: Instrument control and data acquisition in advanced analytic systems that utilize optical pulses for sample analysis are described. Clocking signals for data acquisition, data processing, communication, and/or other data handling functionalities can be derived from an on-board pulsed optical source, such as a passively mode-locked laser. The derived clocking signals can operate in combination with one or more clocking signals from a stable oscillator, so that instrument operation and data handling can tolerate interruptions in operation of the pulsed optical source.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: November 7, 2023
    Assignee: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Benjamin Cipriany, Faisal R. Ahmad, Joseph D. Clark, Daniel B. Frier, Michael Ferrigno, Mel Davey, Tom Thurston, Brett J. Gyarfas, Todd Rearick, Jeremy Christopher Jordan
  • Publication number: 20230349755
    Abstract: Described herein are techniques that improve the collection and readout of charge carriers in an integrated circuit. Some aspects of the present disclosure relate to integrated circuits having pixels with a plurality of charge storage regions. Some aspects of the present disclosure relate to integrated circuits configured to substantially simultaneously collect and read out charge carriers, at least in part. Some aspects of the present disclosure relate to integrated circuits having a plurality of pixels configured to transfer charge carriers between charge storage regions within each pixel substantially at the same time. Some aspects of the present disclosure relate to integrated circuits having three or more sequentially coupled charge storage regions. Some aspects of the present disclosure relate to integrated circuits capable of increased charge transfer rates.
    Type: Application
    Filed: June 7, 2023
    Publication date: November 2, 2023
    Applicant: Quantum-Si Incorporated
    Inventors: Eric A.G. Webster, Todd Rearick, Thomas Raymond Thurston
  • Patent number: 11804499
    Abstract: Described herein are techniques to reduce or remove the impact of secondary path photons and/or charge carriers on storage bins of an integrated device to improve noise performance, and thus, sample analysis. Some embodiments relate to optical rejection techniques such as including an optical barrier positioned to block at least some photons from reaching the storage bins. Some embodiments relate to electrical rejection techniques such as including an electrical barrier configured to block at least some charge carriers from reaching the storage bins along at least one secondary path. Some embodiments relate to an integrated device in which at least one storage bin is shaped and/or positioned relative to the photodetector to facilitate receipt of some charge carriers (e.g., fluorescent emission charge carriers) and/or photons and to impede receipt of other charge carriers (e.g., noise charge carriers) and/or photons.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: October 31, 2023
    Assignee: Quantum-Si Incorporated
    Inventors: Dajiang Yang, Farshid Ghasemi, Keith G. Fife, Todd Rearick, Ali Kabiri, Gerard Schmid, Eric A. G. Webster
  • Publication number: 20230341621
    Abstract: Optical waveguides and couplers for delivering light to an array of photonic elements in a photonic integrated device. The photonic integrated device and related instruments and systems may be used to analyze samples in parallel. The photonic integrated device may include a grating coupler configured to receive light from an external light source and optically couple with multiple waveguides configured to optically couple with sample wells of the photonic integrated device.
    Type: Application
    Filed: June 26, 2023
    Publication date: October 26, 2023
    Applicant: Quantum-Si Incorporated
    Inventors: Kyle Preston, Bing Shen, Ali Kabiri, Gerard Schmid
  • Patent number: 11795497
    Abstract: Methods and apparatus providing for the isolation of an unknown mutation from a sample comprising wild type nucleic acids and mutated nucleic acids through the application of time-varying driving fields and periodically varying mobility-altering fields to the sample within in an affinity matrix.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: October 24, 2023
    Assignee: Quantum-Si Incorporated
    Inventors: Andrea Marziali, Milenko Despotovic, Joel Pel
  • Patent number: 11774674
    Abstract: Optical waveguides and couplers for delivering light to an array of photonic elements in a photonic integrated device. The photonic integrated device and related instruments and systems may be used to analyze samples in parallel. The photonic integrated device may include a grating coupler configured to receive light from an external light source and optically couple with multiple waveguides configured to optically couple with sample wells of the photonic integrated device.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: October 3, 2023
    Assignee: Quantum-Si Incorporated
    Inventors: Kyle Preston, Bing Shen, Ali Kabiri, Gerard Schmid