Patents Assigned to Quintessent Inc.
  • Patent number: 11733457
    Abstract: Integrated-optics systems are presented in which an active-material stack is disposed on a coupling layer in a first region to collectively define an OA waveguide that supports an optical mode of a light signal. The coupling layer is patterned to define a coupling waveguide and a passive waveguide, which are formed as two abutting, optically coupled segments of the coupling layer. The lateral dimensions of the active-material stack are configured to control the shape and vertical position of the optical mode at any location along the length of the OA waveguide. The active-material stack includes a taper that narrows along its length such that the optical mode is located completely in the coupling waveguide where the coupling waveguide abuts the passive waveguide. In some embodiments, the passive layer is optically coupled with the OA waveguide and a silicon waveguide, thereby enabling light to propagate between them.
    Type: Grant
    Filed: September 22, 2021
    Date of Patent: August 22, 2023
    Assignee: Quintessent Inc.
    Inventors: Brian Koch, Michael Davenport, Alan Liu
  • Patent number: 11631967
    Abstract: Integrated-optics systems are presented in which an optically active device is optically coupled with a silicon waveguide via a passive compound-semiconductor waveguide. In a first region, the passive waveguide and the optically active device collectively define a composite waveguide structure, where the optically active device functions as the central ridge portion of a rib-waveguide structure. The optically active device is configured to control the vertical position of an optical mode in the composite waveguide along its length such that the optical mode is optically coupled into the passive waveguide with low loss. The passive waveguide and the silicon waveguide collectively define a vertical coupler in a second region, where the passive and silicon waveguides are configured to control the distribution of the optical mode along the length of the coupler, thereby enabling the entire mode to transition between the passive and silicon waveguides with low loss.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: April 18, 2023
    Assignee: Quintessent Inc.
    Inventors: Brian Koch, Michael Davenport, Alan Liu, Justin Colby Norman
  • Patent number: 11402576
    Abstract: Aspects of the present disclosure are directed to wavelength division multiplexing systems comprising arrays of spectrally selective devices that are arranged on a substrate to compensate for perturbations of the spectral characteristics of the devices due to factors such as temperature non-uniformity, inherent spectral non-uniformity, and the like. As a result, shifts in the center wavelengths and/or changes in the wavelength spacing for the wavelength channels of a WDM system due to such perturbations are mitigated. In some embodiments, an array of spectrally selective devices is arranged on a substrate such that their respective wavelength channels are not linearly correlated with their physical position within the array, enabling the devices to be arranged in pairs that are subject to substantially the same environmental conditions and/or operate on nearly the same spectral range.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: August 2, 2022
    Assignee: Quintessent Inc.
    Inventors: Michael Davenport, Brian Koch
  • Patent number: 11150406
    Abstract: Integrated-optics systems are presented in which an active-material stack is disposed on a coupling layer in a first region to collectively define an OA waveguide that supports an optical mode of a light signal. The coupling layer is patterned to define a coupling waveguide and a passive waveguide, which are formed as two abutting, optically coupled segments of the coupling layer. The lateral dimensions of the active-material stack are configured to control the shape and vertical position of the optical mode at any location along the length of the OA waveguide. The active-material stack includes a taper that narrows along its length such that the optical mode is located completely in the coupling waveguide where the coupling waveguide abuts the passive waveguide. In some embodiments, the passive layer is optically coupled with the OA waveguide and a silicon waveguide, thereby enabling light to propagate between them.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: October 19, 2021
    Assignee: Quintessent Inc.
    Inventors: Brian Koch, Michael Davenport, Alan Liu
  • Patent number: 11131806
    Abstract: Integrated-optics systems are presented in which an optically active device is optically coupled with a silicon waveguide via a passive compound-semiconductor waveguide. In a first region, the passive waveguide and the optically active device collectively define a composite waveguide structure, where the optically active device functions as the central ridge portion of a rib-waveguide structure. The optically active device is configured to control the vertical position of an optical mode in the composite waveguide along its length such that the optical mode is optically coupled into the passive waveguide with low loss. The passive waveguide and the silicon waveguide collectively define a vertical coupler in a second region, where the passive and silicon waveguides are configured to control the distribution of the optical mode along the length of the coupler, thereby enabling the entire mode to transition between the passive and silicon waveguides with low loss.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: September 28, 2021
    Assignee: Quintessent Inc.
    Inventors: Brian Koch, Michael Davenport, Alan Liu