Patents Assigned to Research Institute of Industrial Science & Technology
  • Patent number: 11152603
    Abstract: The present invention relates to a saggar for firing an active material of a secondary battery, a method for manufacturing the saggar, and a method for firing the active material. The saggar for firing an active material of a secondary battery according to the present invention has a coating layer formed on a bottom surface or a wall surface thereof so as to collect carbon dioxide. By means of the coating layer, the concentration of the carbon dioxide in the saggar can be lowered by collecting the carbon dioxide that is a by-product resulting from a firing reaction, thereby enabling a reduction in the amount of remaining lithium in the active material. The saggar of the present invention provides the saggar for firing an active material of a secondary battery, wherein the saggar has at least one through hole in the bottom surface, or the bottom surface and wall surfaces thereof so as to communicate a gas.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: October 19, 2021
    Assignee: RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE & TECHNOLOGY
    Inventors: Young-Min Park, Soon-Cheol Hwang, Choong-Mo Yang, Woo-Taek Kim
  • Patent number: 11147162
    Abstract: A flexible substrate and an electronic device having high flexibility as a whole including an element mounting portion and a connection terminal portion, and a production method of the electronic device are provided. The flexible substrate includes a flexible base, and a conductive wiring made of a conductive organic compound formed on the base, wherein part of the conductive wiring serves as a connection part with another electronic member. Further, an electronic device 100 includes flexible bases 11 and 21, conductive wirings 13 and 23 made of a conductive organic compound formed on the bases, and electronic elements 12 and 22 connected to the conductive wirings, wherein part of the conductive wiring serves as a connection part 30 with another substrate.
    Type: Grant
    Filed: December 25, 2018
    Date of Patent: October 12, 2021
    Assignees: Pi-Crystal Incorporation, Osaka Research Institute of Industrial Science and Technology
    Inventors: Mayumi Uno, Kazuki Maeda, Masashi Nitani, Busang Cha, Junichi Takeya
  • Patent number: 11136646
    Abstract: Disclosed is a thermal reduction apparatus. The thermal reduction apparatus according to the exemplary embodiment includes: a preheating unit which preheats a to-be-reduced material and loads the to-be-reduced material into a reducing unit; the reducing unit which is connected to the preheating unit and in which a thermal reduction reaction of the to-be-reduced material occurs; a cooling unit which is connected to the reducing unit and from which the to-be-reduced material flowing into the cooling unit is unloaded to the outside; a gate device which is installed between the preheating unit and the reducing unit; a gate device which is installed between the reducing unit and the cooling unit; a condensing device which is connected to the reducing unit and condenses a metal vapor; a first blocking unit which is installed in the reducing unit; and a second blocking unit which is installed in the reducing unit so as to be spaced apart from the first blocking unit.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: October 5, 2021
    Assignee: RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE & TECHNOLOGY
    Inventors: Dong Kyun Choo, Young Il Kim, Kil Won Cho, Wung Yong Choo, Jong Min Park, Jae Sin Park, Gilsoo Han, Good-Sun Choi, Gyu Chang Lee, Dae Kyu Park, Moon Chul Kim
  • Patent number: 11084915
    Abstract: Provided is a means capable of realizing a surface-roughening method for modifying the surface of a resin molded article to form a surficial layer, such as a coating or plating, or to impart a function derived from the surface configuration. The method comprises adding a resin composition and performing a post-treatment and is thus simpler and easier than conventional methods. The resin composition is a composition for resin surface roughening that contains an aliphatic polycarbonate and an alkali metal salt.
    Type: Grant
    Filed: December 26, 2016
    Date of Patent: August 10, 2021
    Assignees: Sumitomo Seika Chemicals Co., Ltd., Osaka Research Institute of Industrial Science and Technology
    Inventors: Kiyoshi Nishioka, Hiroki Maeda, Kei Ishikura, Kimihiro Matsukawa, Yukiyasu Kashiwagi, Masashi Saitoh
  • Patent number: 11077495
    Abstract: A metal powder contains not less than 0.10 mass % and not more than 1.00 mass % of at least one of chromium and silicon, and a balance of copper. The total content of the chromium and the silicon is not more than 1.00 mass %. In accordance with an additive manufacturing method for this metal powder, an additively-manufactured article made from a copper alloy is provided. The additively-manufactured article has both an adequate mechanical strength and an adequate electrical conductivity.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: August 3, 2021
    Assignees: DAIHEN CORPORATION, Osaka Research Institute of Industrial Science and Technology
    Inventors: Ryusuke Tsubota, Junichi Tanaka, Yohei Oka, Takayuki Nakamoto, Takahiro Sugahara, Mamoru Takemura, Sohei Uchida
  • Patent number: 11046787
    Abstract: Provided are a polylactide-grafted cellulose nanofiber that is suitable as a molding material, and a production method thereof. A polylactide-grafted cellulose nanofiber includes grafted cellulose having a graft chain bonding to cellulose constituting a cellulose nanofiber, wherein the graft chain is a polylactide, and a ratio of an absorbance derived from C?O of the polylactide to an absorbance derived from O—H of the cellulose on an infrared absorption spectrum is no less than 0.01 and no greater than 1,000. In addition, a production method of a polylactide-grafted cellulose nanofiber includes carrying out graft polymerization of a lactide to cellulose constituting a cellulose nanofiber in the presence of an organic polymerization catalyst which includes an amine and a salt obtained by reacting the amine with an acid. As the organic polymerization catalyst, 4-dimethylaminopyridine and 4-dimethylaminopyridinium triflate are preferred.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: June 29, 2021
    Assignees: OSAKA RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE AND TECHNOLOGY, DAIO PAPER CORPORATION
    Inventors: Joji Kadota, Yasuyuki Agari, Hiroshi Hirano, Akinori Okada, Takaaki Imai
  • Publication number: 20210187614
    Abstract: A copper alloy powder is a copper alloy powder for additive manufacturing. The copper alloy powder contains more than 1.00 mass % and not more than 2.80 mass % of chromium, and a balance of copper. A method for producing an additively-manufactured article includes a first step of preparing a copper alloy powder containing more than 1.00 mass % and not more than 2.80 mass % of chromium and a balance of copper and a second step of producing the additively-manufactured article from the copper alloy powder, and the additively-manufactured article is produced such that forming a powder layer including the copper alloy powder, and solidifying the copper alloy powder at a predetermined position in the powder layer to form a shaped layer are sequentially repeated to stack such shaped layers to thus produce the additively-manufactured article.
    Type: Application
    Filed: March 4, 2021
    Publication date: June 24, 2021
    Applicants: DAIHEN CORPORATION, Osaka Research Institute of Industrial Science and Technology
    Inventors: Ryusuke TSUBOTA, Yohei OKA, Akira OKAMOTO, Takayuki NAKAMOTO, Takahiro SUGAHARA, Naruaki SHINOMIYA, Mamoru TAKEMURA, Sohei UCHIDA
  • Publication number: 20210187902
    Abstract: The present invention is a laminate: with which differences in the thermal expansion coefficient at interfaces between different materials in the interior of a semiconductor element or the like can be kept small; which has high heat resistance; and which has high thermal conductivity. This laminate is provided with at least two layers of thermal expansion-controlling members, the thermal expansion-controlling members including a thermally conductive first inorganic filler joined to one end of a first coupling agent, and a thermally conductive second inorganic filler joined to one end of a second coupling agent; the other end of the first coupling agent and the other end of the second coupling agent are respectively joined to a polymerizable compound, or joined to one another; and the thermal expansion-controlling members have thermal expansion coefficients that are respectively different.
    Type: Application
    Filed: February 28, 2017
    Publication date: June 24, 2021
    Applicants: JNC CORPORATION, OSAKA RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Takeshi FUJIWARA, Jyunichi INAGAKI, Yasuyuki AGARI, Hiroshi HIRANO, Joji KADOTA, Akinori OKADA
  • Patent number: 10981226
    Abstract: A copper alloy powder is a copper alloy powder for additive manufacturing. The copper alloy powder contains more than 1.00 mass % and not more than 2.80 mass % of chromium, and a balance of copper. A method for producing an additively-manufactured article includes a first step of preparing a copper alloy powder containing more than 1.00 mass % and not more than 2.80 mass % of chromium and a balance of copper and a second step of producing the additively-manufactured article from the copper alloy powder, and the additively-manufactured article is produced such that forming a powder layer including the copper alloy powder, and solidifying the copper alloy powder at a predetermined position in the powder layer to form a shaped layer are sequentially repeated to stack such shaped layers to thus produce the additively-manufactured article.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: April 20, 2021
    Assignees: DAIHEN CORPORATION, Osaka Research Institute of Industrial Science and Technology
    Inventors: Ryusuke Tsubota, Yohei Oka, Akira Okamoto, Takayuki Nakamoto, Takahiro Sugahara, Naruaki Shinomiya, Mamoru Takemura, Sohei Uchida
  • Patent number: 10975396
    Abstract: The present invention provides a D-glucaric acid-producing bacterium and a method for producing D-glucaric acid. The present invention is characterized in that D-glucaric acid or a salt thereof is produced from one or more saccharides selected from the group consisting of D-glucose, D-gluconic acid and D-glucuronic acid with catalytic action of a specific alcohol dehydrogenase PQQ-ADH (1) and a specific aldehyde dehydrogenase PQQ-ALDH (2), and that D-glucaric acid or a salt thereof is produced by using a microorganism having the PQQ-ADH (1) and the PQQ-ALDH (2) or a processed product thereof in the presence of the one or more saccharides. The present invention can provide a microorganism having improved productivity of D-glucaric acid to be used for production of D-glucaric acid and a method for efficiently producing D-glucaric acid.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: April 13, 2021
    Assignees: Ensuiko Sugar Refining Co., Ltd., Osaka Research Institute of Industrial Science and Technology
    Inventors: Tetsuya Ito, Hiroki Tadokoro, Hisaharu Masaki, Katsuhiko Mikuni, Hiromi Murakami, Taro Kiso, Takaaki Kiryu
  • Patent number: 10969312
    Abstract: Provided are a striking device and a natural frequency measuring device capable of simply and accurately measuring a natural frequency of a system including force detector. The striking device includes an arm capable of swinging around a spindle, and a steel ball arranged in an end part of the arm on a side opposite to the spindle. The spindle is supported by a supporting part capable of lifting up and down relative to a post erected on a magnet stand. A supporting part for supporting a supporting plate is arranged at a position in the post and above the supporting part. A permanent magnet is placed above the supporting plate. The steel ball falls down in an arc shape from a standby height position when the permanent magnet is removed.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: April 6, 2021
    Assignees: SHIMADZU CORPORATION, Osaka Research Institute of Industrial Science and Technology, City of Nagoya, AKITA PREFECTURE
    Inventors: Tadaoki Takii, Masaki Nishimura, Satoshi Taniguchi, Mitsuhiko Kimura, Norifumi Kasai
  • Publication number: 20210017124
    Abstract: Provided is a compound that thickens a fluid organic material to a desired viscosity and uniformly stabilizes composition thereof. A compound of the present invention is represented by Formula (1): where R1 represents a monovalent linear aliphatic hydrocarbon group having from 10 to 25 carbons; R2 and R3 are the same or different, representing a divalent aliphatic hydrocarbon group having 2, 4, 6, or 8 carbons, a divalent alicyclic hydrocarbon group having 6 carbons, or a divalent aromatic hydrocarbon group; R4 represents a divalent aliphatic hydrocarbon group having from 1 to 8 carbon(s); R5 and R6 are the same or different, representing a monovalent aliphatic hydrocarbon group having from 1 to 3 carbon(s) or a hydroxyalkylether group L1 to L3 represent an amide bond; in a case where L1 and L3 are —CONH—, L2 is —NHCO—, and in a case where L1 and L3 are —NHCO—, L2 is —CONH—.
    Type: Application
    Filed: March 18, 2019
    Publication date: January 21, 2021
    Applicants: DAICEL CORPORATION, OSAKA RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Youji SUZUKI, Rie KAKEHASHI, Naoji TOKAI
  • Patent number: 10843260
    Abstract: A metal powder contains not less than 0.10 mass % and not more than 1.00 mass % of at least one of chromium and silicon, and a balance of copper. The total content of the chromium and the silicon is not more than 1.00 mass %. In accordance with an additive manufacturing method for this metal powder, an additively-manufactured article made from a copper alloy is provided. The additively-manufactured article has both an adequate mechanical strength and an adequate electrical conductivity.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: November 24, 2020
    Assignees: DAIHEN CORPORATION, OSAKA RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Ryusuke Tsubota, Jyunichi Tanaka, Yohei Oka, Takayuki Nakamoto, Takahiro Sugahara, Mamoru Takemura, Sohei Uchida
  • Patent number: 10822324
    Abstract: The present invention relates to a method for selectively separating propylene carbonate by adding water to reaction products comprising a polyether carbonate polyol and propylene carbonate, which are generated from a polymerization reaction of propylene oxide and carbon dioxide under a double metal cyanide (DMC) catalyst, wherein an economical and effective separation of propylene carbonate can be achieved.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: November 3, 2020
    Assignees: POSCO, RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE & TECHNOLOGY
    Inventors: Joon-Hyun Baik, Jae-Hee Ha
  • Patent number: 10759671
    Abstract: The present invention relates to a method for manufacturing lithium hydroxide and lithium carbonate, and a device therefor.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: September 1, 2020
    Assignee: RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE & TECHNOLOGY
    Inventors: Sung Kook Park, Kwang Seok Park, Sang Gil Lee, Woo Chul Jung, Ki Young Kim, Hyun Woo Lee
  • Patent number: 10756383
    Abstract: General Formula (I) Provided is an all solid state secondary-battery additive comprising a polyalkylene carbonate (I) represented by general formula (I), and by providing such additive, properties such as the charge-discharge capacity and interfacial resistance of an all-solid-state secondary battery are improved. (In general formula (I), R1 and R2 are each a C1-10 chain-like alkylene group or C3-10 cycloalkylene group, m is 0, 1, or 2 and n is an integer of 10 to 15000, and each R1, R2 and m in the polyalkylene carbonate (I) chain is independently the same or different.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: August 25, 2020
    Assignees: OSAKA RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE AND TECHNOLOGY, SUMITOMO SEIKA CHEMICALS CO., LTD.
    Inventors: Masanari Takahashi, Mari Yamamoto, Yasuyuki Kobayashi, Shingo Ikeda, Yukiyasu Kashiwagi, Masashi Saitoh, Shuichi Karashima, Kiyoshi Nishioka, Ryo Miyabara
  • Patent number: 10752755
    Abstract: This invention is a composition capable of forming a heat-dissipating member that has high heat resistance and high thermal conductivity. This composition for a heat-dissipating member comprises a thermally conductive first inorganic filler bonded to one end of a first coupling agent, and a thermally conductive second inorganic filler bonded to one end of a second coupling agent, the composition being characterized in that: the other end of the first coupling agent and the other end of the second coupling agent are each bonded to a bifunctional or higher silsesquioxane by a curing treatment, as illustrated in FIG. 2; or at least one of the first coupling agent and the second coupling agent includes, in the structure thereof, a silsesquioxane, and the other end of the first coupling agent and the other end of the second coupling agent are bonded together as illustrated in FIG. 3.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: August 25, 2020
    Assignees: JNC CORPORATION, OSAKA RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Takeshi Fujiwara, Takayuki Hattori, Jyunichi Inagaki, Takafumi Kuninobu, Kazuhiro Takizawa, Yasuyuki Agari, Hiroshi Hirano, Joji Kadota, Akinori Okada
  • Patent number: 10679922
    Abstract: The inventions are: a composition capable of forming a heat-dissipating member that has high thermal conductivity and in which the thermal expansion coefficient can be controlled; and a heat-dissipating member. This composition for a heat-dissipating member comprises a thermally conductive first inorganic filler bonded to one end of a first coupling agent, and a thermally conductive second inorganic filler bonded to one end of a second coupling agent, the composition being characterized in that: at least one of the first coupling agent and the second coupling agent is a liquid crystal silane coupling agent; the other end of the first coupling agent and the other end of the second coupling agent each have a functional group bondable with one another; and the other end of the first coupling agent bonds with the other end of the second coupling agent by a curing treatment.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: June 9, 2020
    Assignees: JNC CORPORATION, OSAKA RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Takeshi Fujiwara, Jyunichi Inagaki, Masako Hinatsu, Yasuyuki Agari, Hiroshi Hirano, Joji Kadota, Akinori Okada
  • Patent number: 10661227
    Abstract: The present invention relates to a method for producing lithium hydroxide and lithium carbonate, wherein the lithium hydroxide and the lithium carbonate can be produced by a series of steps of: performing bipolar electrodialysis of a lithium-containing solution from which divalent ion impurities have been removed; concentrating lithium in the lithium-containing solution and at the same time, converting the lithium to lithium hydroxide; and carbonating the lithium hydroxide to obtain lithium carbonate.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: May 26, 2020
    Assignee: RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE & TECHNOLOGY
    Inventors: Sung Kook Park, Kwang Seok Park, Sang Gil Lee, Woo Chul Jung, Ki Young Kim, Hyun Woo Lee
  • Publication number: 20200123275
    Abstract: Provided are a polylactide-grafted cellulose nanofiber that is suitable as a molding material, and a production method thereof. A polylactide-grafted cellulose nanofiber includes grafted cellulose having a graft chain bonding to cellulose constituting a cellulose nanofiber, wherein the graft chain is a polylactide, and a ratio of an absorbance derived from C?O of the polylactide to an absorbance derived from O—H of the cellulose on an infrared absorption spectrum is no less than 0.01 and no greater than 1,000. In addition, a production method of a polylactide-grafted cellulose nanofiber includes carrying out graft polymerization of a lactide to cellulose constituting a cellulose nanofiber in the presence of an organic polymerization catalyst which includes an amine and a salt obtained by reacting the amine with an acid. As the organic polymerization catalyst, 4-dimethylaminopyridine and 4-dimethylaminopyridinium triflate are preferred.
    Type: Application
    Filed: May 9, 2018
    Publication date: April 23, 2020
    Applicants: OSAKA RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE AND TECHNOLOGY, DAIO PAPER CORPORATION
    Inventors: Joji Kadota, Yasuyuki Agari, Hiroshi Hirano, Akinori Okada, Takaaki Imai