Patents Assigned to Research Institute of Innovative Technology for the Earth
  • Patent number: 9557196
    Abstract: In an optical fiber cable that includes an optical fiber core for measuring pressure and a multilayer armor cable for measuring temperature, an annular clearance space having a desired thickness is formed between the optical fiber core and the multilayer armor cable and fixing members for fixing the optical fiber core and the multilayer armor cable are provided at predetermined intervals in the axial direction of the optical fiber cable.
    Type: Grant
    Filed: April 3, 2014
    Date of Patent: January 31, 2017
    Assignees: RESEARCH INSTITUTE OF INNOVATIVE TECHNOLOGY FOR THE EARTH, NEUBREX CO., LTD.
    Inventors: Ziqiu Xue, Kinzo Kishida, Yoshiaki Yamauchi, Shinzo Suzaki
  • Patent number: 9453248
    Abstract: Provided is an aniline-producing transformant constructed by introducing a gene which encodes an enzyme having aminobenzoate decarboxylase activity into a coryneform bacterium as a host. Also provided is a process for producing aniline, which comprises a step of allowing the transformant to react in a reaction mixture containing aminobenzoic acid, an ester thereof, and/or a salt thereof under reducing conditions, and a step of recovering aniline from the reaction mixture.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: September 27, 2016
    Assignees: RESEARCH INSTITUTE OF INNOVATIVE TECHNOLOGY FOR THE EARTH, SUMITOMO RUBBER INDUSTRIES, LTD.
    Inventors: Hideaki Yukawa, Masayuki Inui
  • Publication number: 20160144340
    Abstract: Disclosed are a carbon dioxide separating material comprising a polyamine carrier in which a polyamine having at least two isopropyl groups on one or more of the nitrogen atoms is loaded on a support, and a method for separating or recovering carbon dioxide using the carbon dioxide separating material.
    Type: Application
    Filed: June 27, 2014
    Publication date: May 26, 2016
    Applicant: Research Institute of Innovative Technology For the Earth
    Inventors: Katsunori YOGO, Firoz Alam CHOWDHURY, Hidetaka YAMADA
  • Publication number: 20160116308
    Abstract: In an optical fiber cable that includes an optical fiber core for measuring pressure and a multilayer armor cable for measuring temperature, an annular clearance space having a desired thickness is formed between the optical fiber core and the multilayer armor cable and fixing members for fixing the optical fiber core and the multilayer armor cable are provided at predetermined intervals in the axial direction of the optical fiber cable.
    Type: Application
    Filed: April 3, 2014
    Publication date: April 28, 2016
    Applicants: NEUBREX CO., LTD., RESEARCH INSTITUTE OF INNOVATIVE TECHNOLOGY FOR THE EARTH
    Inventors: Ziqiu XUE, Kinzo KISHIDA, Yoshiaki YAMAUCHI, Shinzo SUZAKI
  • Patent number: 9290770
    Abstract: A transformant obtainable by introducing one or more of the following DNAs (a), (b), and (c) into a coryneform bacterium as a host. (a) A DNA which encodes acetohydroxy acid synthase derived from Corynebacterium glutamicum and which has a mutation changing the glycine at position 156 to glutamic acid (G156E) in an amino acid sequence encoded by the DNA, or an analog thereof. (b) A DNA which encodes acetohydroxy acid isomeroreductase derived from Corynebacterium glutamicum and which has mutations changing the serine at position 34 to glycine (S34G), the leucine at position 48 to glutamic acid (L48E), and the arginine at position 49 to phenylalanine (R49F) in an amino acid sequence encoded by the DNA, or an analog thereof. (c) A DNA which encodes leucine dehydrogenase derived from Lysinibacillus sphaericus, or an analog thereof.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: March 22, 2016
    Assignee: RESEARCH INSTITUTE OF INNOVATIVE TECHNOLOGY FOR THE EARTH
    Inventors: Hideaki Yukawa, Masayuki Inui
  • Publication number: 20160068876
    Abstract: An objective of the present invention is to provide a microorganism capable of efficiently producing aniline from aminobenzoic acid, and a process for efficiently producing aniline from aminobenzoic acid. To achieve the objective, provided is an aniline-producing transformant constructed by introducing a gene which encodes an enzyme having aminobenzoate decarboxylase activity into a coryneform bacterium as a host, characterized in that the enzyme having aminobenzoate decarboxylase activity is composed of an amino acid sequence which is the same as that represented by SEQ ID NO: 2 except for having a mutation of at least proline (P) at position 309 from the N terminus.
    Type: Application
    Filed: March 4, 2014
    Publication date: March 10, 2016
    Applicants: RESEARCH INSTITUTE OF INNOVATIVE TECHNOLOGY FOR THE EARTH, SUMITOMO RUBBER INDUSTRIES, LTD.
    Inventors: Keitarou FUJIKURA, Kazumi HIRAGA, Masayuki INUI, Hideaki YUKAWA
  • Publication number: 20150219443
    Abstract: Under a known pressure is externally applied to a reference member to which an optical fiber is fixed, test light is allowed to enter the optical fiber, and at least one of a reference Brillouin measurement for determining a reference Brillouin frequency shift amount based on the Brillouin scattering phenomenon, and a reference Rayleigh measurement for determining a reference Rayleigh frequency shift amount based on the Rayleigh scattering phenomenon is performed. A Brillouin measurement coefficient or a Rayleigh measurement coefficient is determined from these calculation results. An optical fiber is fixed to a sample member, the volumetric change of which is unknown, and the same sample Brillouin measurement or sample Rayleigh measurement is performed to determine the frequency shift amount. The volumetric change of the sample member is determined from the sample Brillouin or the sample Rayleigh frequency shift amount, and from the Brillouin or the Rayleigh measurement coefficient.
    Type: Application
    Filed: August 10, 2012
    Publication date: August 6, 2015
    Applicants: NEUBREX CO., LTD., RESEARCH INSTITUTE OF INNOVATIVE TECHNOLOGY FOR THE EARTH
    Inventors: Ziqiu Xue, Yoshiaki Yamauchi, Kinzo Kishida
  • Patent number: 8871478
    Abstract: A Corynebacterium glutamicum transformant having the capability of producing isobutanol and the following genes (1) to (5): (1) a gene which encodes an enzyme having acetohydroxy acid synthase activity; (2) a gene which encodes an enzyme having acetohydroxy acid isomeroreductase activity; (3) a gene which encodes an enzyme having dihydroxy acid dehydratase activity; (4) a gene which encodes an enzyme having 2-keto acid decarboxylase activity; and (5) a gene which encodes an enzyme having alcohol dehydrogenase activity, at least one of the genes being endogenous, and at least one of the genes being exogenous, efficiently produces isobutanol.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: October 28, 2014
    Assignee: Research Institute of Innovative Technology for the Earth
    Inventors: Hideaki Yukawa, Masayuki Inui
  • Patent number: 8846358
    Abstract: In a step of contacting an organic material including formic acid ions and a carbon source other than the formic acid ions with a microorganism having a formate dehydrogenase gene and a hydrogenase gene under an anaerobic condition, concentration of the formic acid ions in the organic material is set to be not less than 0.01 mol/L and not more than 0.5 mol/L, and concentration of the carbon source is set to not less than 0.1 mmol/L and not more than 200 mmol/L. This allows continuously producing hydrogen for a long time, without dropping the ability of the microorganism to produce hydrogen.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: September 30, 2014
    Assignees: Sharp Kabushiki Kaisha, Research Institute of Innovative Technology for the Earth
    Inventors: Akihito Yoshida, Hideaki Yukawa, Masayuki Inui
  • Publication number: 20140227747
    Abstract: A transformant obtainable by introducing one or more of the following DNAs (a), (b), and (c) into a coryneform bacterium as a host. (a) A DNA which encodes acetohydroxy acid synthase derived from Corynebacterium glutamicum and which has a mutation changing the glycine at position 156 to glutamic acid (G156E) in an amino acid sequence encoded by the DNA, or an analog thereof. (b) A DNA which encodes acetohydroxy acid isomeroreductase derived from Corynebacterium glutamicum and which has mutations changing the serine at position 34 to glycine (S34G), the leucine at position 48 to glutamic acid (L48E), and the arginine at position 49 to phenylalanine (R49F) in an amino acid sequence encoded by the DNA, or an analog thereof. (c) A DNA which encodes leucine dehydrogenase derived from Lysinibacillus sphaericus, or an analog thereof.
    Type: Application
    Filed: August 21, 2012
    Publication date: August 14, 2014
    Applicant: RESEARCH INSTITUTE OF INNOVATIVE TECHNOLOGY FOR THE EARTH
    Inventors: Hideaki Yukawa, Masayaki Inui
  • Patent number: 8728791
    Abstract: The present invention provides a microorganism which possesses the formate dehydrogenase gene and hydrogenase gene and contains an exogenous transcription activator gene for formate hydrogen lyase system, characterized in that said microorganism shows the transcription activator for formate hydrogen lyase system highly expressed therein and shows an improved function to generate hydrogen from formic acid, and a process for producing hydrogen using the microorganism. Utilization of the microorganism of the present invention enables the hydrogen production from an organic substrate to be accomplished on a practical, commercial scale. The hydrogen to be produced by the present invention, which is free of carbon monoxide being causative to poisoning of the electrode catalyst for fuel cells, is useful as a fuel for fuel cells.
    Type: Grant
    Filed: December 7, 2005
    Date of Patent: May 20, 2014
    Assignees: Research Institute of Innovative Technology for the Earth, Sharp Corporation
    Inventors: Hideaki Yukawa, Masayuki Inui, Akihito Yoshida, Naoto Torata
  • Patent number: 8721774
    Abstract: Disclosed is a gas separation composite membrane comprising a polyamidoamine dendrimer (A) having a specific group, a vinyl alcohol-based polymer (B) containing 0.5 to 5 mol % of carboxyl groups, and a crosslinking agent (C) having an azetidinium group, wherein the mass ratio (A)/(C) of the polyamidoamine dendrimer (A) to the crosslinking agent (C) having an azetidinium group is 20/80 to 65/35, and the mass ratio (B)/(C) of the vinyl alcohol-based polymer (B) to the crosslinking agent (C) having an azetidinium group is 20/80 to 80/20. Thus, a gas separation composite membrane capable of separating a specific type of gas from a mixed gas containing water vapor is provided.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: May 13, 2014
    Assignee: Research Institute of Innovative Technology for the Earth
    Inventors: Shushi Asano, Yoshiki Nobuto, Naoki Fujiwara, Shuhong Duan, Shingo Kazama
  • Patent number: 8685703
    Abstract: A coryneform bacterium transformant prepared by transferring an exogenous gene which encodes a protein having a sugar transporter function into a coryneform bacterium capable of utilizing D-xylose.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: April 1, 2014
    Assignee: Research Institute of Innovative Technology for the Earth
    Inventors: Hideaki Yukawa, Masayuki Inui
  • Publication number: 20140088335
    Abstract: A methane separation method of the present invention at least includes: mixing the biogas and an absorbing liquid that absorbs carbon dioxide in a mixer so as to form a mixed fluid of a gas-liquid mixed phase; introducing the mixed fluid into a first gas/liquid separator so as to separate the mixed fluid through gas/liquid separation into methane and a CO2-absorbed liquid formed due to an absorption of the carbon dioxide by the absorbing liquid; recovering methane separated in the first gas/liquid separator; and supplying the CO2-absorbed liquid through a supply port of a membrane module comprised of a container and a plurality of hollow fiber permeable membranes built therein to inside of the membranes so as to make the CO2-absorbed liquid permeate the permeable membranes, and lowering a pressure outside the permeable membranes to a level lower than that inside the permeable membranes.
    Type: Application
    Filed: September 19, 2013
    Publication date: March 27, 2014
    Applicants: RESEARCH INSTITUTE OF INNOVATIVE TECHNOLOGY FOR THE EARTH, TAIYO NIPPON SANSO CORPORATION
    Inventors: Takafumi TOMIOKA, Toshiyuki ABE, Toru SAKAI, Hiroshi MANO, Kazuhiro OKABE
  • Patent number: 8604180
    Abstract: The present invention relates to a method of inducing expression of a promoter function of various genes in a Coryneform bacterium related to function exertion, in order to exert the function of a Coryneform bacterium highly and effectively under an anaerobic condition, for producing an organic compound useful under an anaerobic condition, more particularly, provides a method of enhancing and/or suppressing the promoter function related to various genes, for the purpose of highly and effectively expressing various protein genes necessary for production of an objective substance, and suppressing expression of an unnecessary protein gene. The DNA fragment of the present invention is useful as a primer which is introduced into a transformed Coryneform bacterium producing a useful substance such as lactic acid and succinic acid highly and at a high efficiency.
    Type: Grant
    Filed: September 5, 2005
    Date of Patent: December 10, 2013
    Assignee: Research Institute of Innovative Technology for the Earth
    Inventors: Hideaki Yukawa, Masayuki Inui
  • Patent number: 8585821
    Abstract: In one embodiment of the present invention, a monocrystal SiC epitaxial substrate is produced which includes a monocrystal SiC substrate; a buffer layer made of a first SiC epitaxial film formed on the monocrystal SiC substrate; and an active layer made of a second SiC epitaxial film formed on the buffer layer. The buffer layer is grown by heat-treating a set of the monocrystal SiC substrate, a carbon source plate, and a metal Si melt layer having a predetermined thickness and interposed between the monocrystal SiC substrate and the metal Si melt layer, so as to epitaxially grow monocrystal SiC on the monocrystal SiC substrate. The active layer is grown by epitaxially growing monocrystal SiC on the buffer layer by vapor phase growth method. This allows for production of a monocrystal SiC epitaxial substrate including a high-quality monocrystal SiC active layer being low in defects.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: November 19, 2013
    Assignees: Ecotron Co., Ltd., Research Institute of Innovative Technology for the Earth
    Inventors: Nobuhiko Nakamura, Toru Matsunami, Kimito Nishikawa
  • Publication number: 20130302860
    Abstract: Provided is an aniline-producing transformant constructed by introducing a gene which encodes an enzyme having aminobenzoate decarboxylase activity into a coryneform bacterium as a host. Also provided is a process for producing aniline, which comprises a step of allowing the transformant to react in a reaction mixture containing aminobenzoic acid, an ester thereof, and/or a salt thereof under reducing conditions, and a step of recovering aniline from the reaction mixture.
    Type: Application
    Filed: December 24, 2011
    Publication date: November 14, 2013
    Applicants: Sumitomo Rubber Industries, Ltd., Research Institute of Innovative Technology for the Earth
    Inventors: Hideaki Yukawa, Masayuki Inui
  • Patent number: 8419831
    Abstract: Disclosed is a method for recovering carbon dioxide from a gas containing carbon dioxide, comprising the step (1) of bringing a gas containing carbon dioxide into contact with an aqueous solution containing 2-isopropylaminoethanol and at least one substance selected from the group consisting of piperazines and alkanolamines to absorb carbon dioxide into the aqueous solution; and the step (2) of heating the aqueous solution containing carbon dioxide absorbed therein, which is obtained in the step (1), to separate and recover carbon dioxide from the solution.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: April 16, 2013
    Assignee: Research Institute of Innovative Technology for the Earth
    Inventors: Shinkichi Shimizu, Firoz Alam Chowdhury, Hiromichi Okabe, Kazuya Goto
  • Publication number: 20120312168
    Abstract: Disclosed is a gas separation composite membrane comprising a polyamidoamine dendrimer (A) having a specific group, a vinyl alcohol-based polymer (B) containing 0.5 to 5 mol % of carboxyl groups, and a crosslinking agent (C) having an azetidinium group, wherein the mass ratio (A)/(C) of the polyamidoamine dendrimer (A) to the crosslinking agent (C) having an azetidinium group is 20/80 to 65/35, and the mass ratio (B)/(C) of the vinyl alcohol-based polymer (B) to the crosslinking agent (C) having an azetidinium group is 20/80 to 80/20. Thus, a gas separation composite membrane capable of separating a specific type of gas from a mixed gas containing water vapor is provided.
    Type: Application
    Filed: February 15, 2011
    Publication date: December 13, 2012
    Applicant: RESEARCH INSTITUTE OF INNOVATIVE TECHNOLOGY FOR THE EARTH
    Inventors: Shushi Asano, Yoshiki Nobuto, Naoki Fujiwara, Shuhong Duan, Shingo Kazama
  • Patent number: 8222011
    Abstract: An object of the present invention is to provide processes for producing a rubber anti-aging agent, a vulcanization accelerator and a modified natural rubber converting glucose into benzoic acid or a benzoic acid derivative by a microorganism or extracting benzoic acid or a benzoic acid derivative from a plant, converting the obtained benzoic acid or benzoic acid derivative into aniline or an aniline derivative and then making the rubber anti-aging agent, vulcanization accelerator or modified natural rubber with the aniline or aniline derivative.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: July 17, 2012
    Assignees: Sumitomo Rubber Industries, Ltd., Research Institute of Innovative Technology for the Earth
    Inventor: Keitaro Fujikura