Patents Assigned to Santec Corporation
  • Patent number: 9993153
    Abstract: An optical coherence tomography (OCT) system using partial mirrors is generally described. In an example, the OCT system includes a swept light source. The system further includes an interferometer into which light from the light source is directed and a detector configured to produce an imaging sample signal based on light received from the interferometer. The system also includes a partial mirror disposed over an aperture, wherein the partial mirror is configured to transmit light within a first wavelength range and reflect light within a second wavelength range.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: June 12, 2018
    Assignee: SANTEC CORPORATION
    Inventor: Changho Chong
  • Publication number: 20180039031
    Abstract: A detection device for detecting a power of an input light is provided with a light-receiving module that outputs an electrical signal according to a power of an input light received at a light-receiving surface and an optical system that collimates and guides to the light-receiving surface the input light from the outside. Moreover, this detection device is provided with a structure that decreases an incidence angle of the input light at an interface between the optical system and the light-receiving surface.
    Type: Application
    Filed: August 4, 2017
    Publication date: February 8, 2018
    Applicant: Santec Corporation
    Inventors: Yasuki Sakurai, Shinichiro Asada
  • Publication number: 20180041271
    Abstract: A detection device is provided with a light-receiving module configured to output an electrical signal according to a power of an input light received at a light-receiving surface, an optical lens configured to collimate and guide to the light-receiving surface the input light from the outside, and at least one condensing unit that is provided in a path of the input light between the optical lens and the light-receiving surface and configured to decrease a beam diameter of the input light at the light-receiving surface.
    Type: Application
    Filed: August 4, 2017
    Publication date: February 8, 2018
    Applicant: Santec Corporation
    Inventors: Yasuki Sakurai, Naoyuki Mekada
  • Publication number: 20180039030
    Abstract: A detection device is provided with a holding body that holds a light-receiving module, an optical fiber pigtail, and a lens. The light-receiving module is provided with a light-receiving element and a stem that supports the light-receiving element. The lens collimates an input light from one end of an input fiber and guides a portion of the input light to the light-receiving element. The lens separates the input light into a transmitted light and a reflected light, guiding the transmitted light to the light-receiving element and guiding the reflected light to an output fiber. The light-receiving element has a center of a light-receiving surface thereof disposed in a position away from an axis of the stem.
    Type: Application
    Filed: August 4, 2017
    Publication date: February 8, 2018
    Applicant: Santec Corporation
    Inventor: Yasuki Sakurai
  • Publication number: 20170315422
    Abstract: A light control system is provided with a spatial light modulator of a liquid-crystal type, an input unit, and a controller. The input unit is configured to input a light to the spatial light modulator. The controller is configured to cause the spatial light modulator to function as a diffraction grating by electrically controlling the spatial light modulator. The controller is configured to change a path of a diffracted light from the spatial light modulator corresponding to the light input from the input unit by changing a shape of the diffraction grating.
    Type: Application
    Filed: October 26, 2016
    Publication date: November 2, 2017
    Applicant: Santec Corporation
    Inventor: Yasuki Sakurai
  • Publication number: 20170316756
    Abstract: A system includes a spatial light modulator and a controller. The spatial light modulator is configured to perform phase modulation of a light that passes through a liquid crystal by applying individual voltages to the liquid crystal from each of a plurality of electrodes. The controller is configured to control the voltages applied to the liquid crystal from each of the plurality of electrodes based on phase image data. The phase image data represents values of each pixel corresponding to each of the plurality of electrodes by predetermined gradations. The controller converts gradation values, which are the values of each pixel, into voltages input to the electrodes corresponding to each pixel. The controller is configured to change a fluctuation width from a minimum value to a maximum value of the input voltages corresponding to a fluctuation width from a minimum value to a maximum value of the gradation values.
    Type: Application
    Filed: October 26, 2016
    Publication date: November 2, 2017
    Applicant: Santec Corporation
    Inventor: Yasuki Sakurai
  • Patent number: 9720168
    Abstract: A wavelength selective optical switch includes a light input/output unit having a plurality of input/output ports, a polarization plane-independent wavelength dispersion element that splits incident light input from the optical input/output unit into spatially different angles for each wavelength, and synthesizes emergent light from different directions and outputs the light to the optical input/output unit, a condenser element that condenses the light split by the wavelength splitting element, a polarization splitter that splits incident light incident via the condenser element according to a polarization component to result in first and second light beams, aligns a polarization direction by rotating a polarization direction of one of the beams, and synthesizes the incident light by rotating one polarization direction of the emergent light of the same wavelength among the first and second reflected light beams, and a space phase modulation element.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: August 1, 2017
    Assignee: Santec Corporation
    Inventor: Yasuki Sakurai
  • Patent number: 9560972
    Abstract: Diagnostic devices are generally described. In an example, an improved diagnostic device includes a display, a camera, a diagnostic probe, and a control unit. The display includes an aperture. The camera is configured to capture an image of a patient through the aperture. The diagnostic probe is configured to perform measurements of an area of interest of the patient through the aperture. The control unit is configured to analyze the measurements of the diagnostic probe and cause the display to present the image of the patient and results of the measurements on the image of the patient.
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: February 7, 2017
    Assignee: SANTEC CORPORATION
    Inventor: Changho Chong
  • Patent number: 9549671
    Abstract: Improved optical coherence tomography (OCT) imaging systems are generally described. In an example, an OCT imaging system includes a tunable laser source, an interferometer, a splitter, and a detector. The tunable laser source is configured to provide a wavelength-scanned beam. The interferometer is configured to split the wavelength-scanned beam into a reference beam and an object beam. The splitter is configured to split the object beam into a first path corresponding to an anterior chamber imaging component and a second path corresponding to a retinal imaging component. The detector is configured to detect a signal caused by interference between the reference beam and at least a portion of the object beam reflected from the eye.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: January 24, 2017
    Assignee: SANTEC CORPORATION
    Inventor: Changho Chong
  • Patent number: 9490607
    Abstract: External cavity lasers with single mode-hop-free tuning are generally described. In an example, an external cavity tunable laser system includes an external cavity, a substrate, a chirped grating reflector, and a tunable filter. The substrate has a gain region disposed on the substrate and also includes an active waveguide. The external cavity tunable laser system has a cavity length of the external cavity tunable laser system that is defined by at least a first length of the chirped grating reflector, a second length of the gain region, and a third length of the tunable filter. The cavity length also has an inherent external cavity longitudinal mode. Further, the tunable filter and the chirped grating reflector are configured to synchronize to the inherent external cavity longitudinal mode over a tuning range of the tunable filter.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: November 8, 2016
    Assignee: SANTEC CORPORATION
    Inventor: Changho Chong
  • Patent number: 9306699
    Abstract: An input section for a wavelength-selective switch array includes a plurality of optical ports. The plurality of optical ports includes a first sub-plurality of optical ports having a plurality of first port optical axes, a second sub-plurality of optical ports having a plurality of second port optical axes, and a plurality of optical power elements. Each one of the plurality of optical power elements is disposed at an end of a respective one of each of the plurality of optical ports. The plurality of optical power elements further includes a first sub-plurality of optical power elements including a plurality of first optical power element optical axes displaced relative to the plurality of first port optical axes and a second sub-plurality of optical power elements including a plurality of second optical power element optical axes displaced relative to the plurality of second port optical axes.
    Type: Grant
    Filed: December 31, 2013
    Date of Patent: April 5, 2016
    Assignee: Santec Corporation
    Inventor: Yasuki Sakurai
  • Publication number: 20150188656
    Abstract: An input section for a wavelength-selective switch array includes a plurality of optical ports. The plurality of optical ports includes a first sub-plurality of optical ports having a plurality of first port optical axes, a second sub-plurality of optical ports having a plurality of second port optical axes, and a plurality of optical power elements. Each one of the plurality of optical power elements is disposed at an end of a respective one of each of the plurality of optical ports. The plurality of optical power elements further includes a first sub-plurality of optical power elements including a plurality of first optical power element optical axes displaced relative to the plurality of first port optical axes and a second sub-plurality of optical power elements including a plurality of second optical power element optical axes displaced relative to the plurality of second port optical axes.
    Type: Application
    Filed: December 31, 2013
    Publication date: July 2, 2015
    Applicant: SANTEC CORPORATION
    Inventor: Yasuki Sakurai
  • Patent number: 9025094
    Abstract: A wavelength selective switch device includes an incidence part where wavelength multiplexed light made of light of a plurality of wavelengths enters, an exit part that includes a plurality of fiber that outputs light of a wavelength selected from a signal in which wavelength multiplexed light that entered from the incidence part enters, a polarization diversity part that separates incidence light that entered the incidence part according to polarization components of the incidence light to make first and second optical beams, a wavelength dispersion and synthesis element that spatially disperses incidence light according to a wavelength of the incidence light and multiplexes the spatially dispersed reflected light according to the wavelength, and a wavelength dispersion and synthesis element that spatially disperses incidence light according to a wavelength of the incidence light and multiplexes the spatially dispersed reflected light according to the wavelength.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: May 5, 2015
    Assignee: Santec Corporation
    Inventor: Yasuki Sakurai
  • Patent number: 8885111
    Abstract: An optical node device includes a light receiving/emitting portion having an input port into which a signal beam is incident and an output port that emits a signal beam of a selected wavelength, a chromatic dispersion device that scatters spatially the signal beam depending on the wavelength of the signal beam, an optical coupler that focuses, onto a two-dimensional plane, beams dispersed by the chromatic dispersion device, a spatial light modulating element arranged so as to receive incident light deployed on an xy plane made up of an x-axis direction deployed according to wavelength and a y-axis direction orthogonal to the x-axis direction, and having numerous pixels arranged in a lattice on the xy plane, and a spatial light modulating element driving portion that drives electrodes of the individual pixels arranged in the xy axial directions in the spatial light modulating element.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: November 11, 2014
    Assignee: Santec Corporation
    Inventors: Noboru Uehara, Yuji Hotta
  • Patent number: 8797638
    Abstract: A wavelength selective optical switch device includes an incidence and exit part where a signal beam made of light of a multiplicity of wavelengths enters and a signal beam of a selected wavelength exits, a wavelength dispersion element that spatially disperses a signal beam according to the wavelength thereof and multiplexes reflected light, a condensing element that condenses the light dispersed by the wavelength dispersion element onto a two-dimensional plane, and a wavelength selection element that uses a multilevel optical phased array arranged in a position to receive incident light developed on an xy-plane made of an x-axis direction and a y-axis direction perpendicular thereto developed according to a wavelength, having a multiplicity of pixels arrayed in a lattice on the xy-plane, and that cyclically changes the phase shift amount in the y-axis direction to a sawtooth wave pattern for each pixel on the x-axis.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: August 5, 2014
    Assignee: Santec Corporation
    Inventor: Yuji Hotta
  • Patent number: 8780319
    Abstract: A wavelength selective optical switch includes an incidence/emergence unit that includes an input port at which signal light made up of light of numerous wavelengths is incident and an output port at which light signals of selected wavelengths are emergent, a wavelength dispersion element that spatially disperses signal light according to a wavelength of the signal light, and synthesizes reflected light, a condenser element that condenses light dispersed by the wavelength dispersion element on a two-dimensional plane, a space phase modulator arranged so as to receive incident light deployed on an xy plane made up of an x-axis direction deployed according to wavelength and a y-axis direction orthogonal to the x-axis direction, and having numerous pixels arranged in a lattice on the xy plane, and a space phase modulator drive unit.
    Type: Grant
    Filed: July 5, 2013
    Date of Patent: July 15, 2014
    Assignee: Santec Corporation
    Inventor: Yasuki Sakurai
  • Patent number: 8704032
    Abstract: To provide a treatment agent for asbestos, which has a less influence on human body, the construction and the surrounding environment and can render the asbestos harmless evenly up to the inside of the bulky covering materials, which cover the wall, or the slate materials, and a treatment method of the asbestos using the same. A treatment agent for asbestos, which contains phosphoric acid of 0.5 through 3.0% by weight, hydrogen peroxide of 1 through 20% by weight, alcohol of 0.5 through 20% by weight and pure water and a treatment method of the asbestos using the same are described.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: April 22, 2014
    Assignee: Santec Corporation
    Inventors: Yoshihiro Taguchi, Teruhiko Kusano, Hiroaki Harano
  • Patent number: 8690328
    Abstract: Embodiments of the present disclosure includes optical tomographic methods and systems for acquiring information based on an image precisely in a short time. In one example, an optical tomographic imaging device may irradiate light on an eye which is the object to be measured via an interferometer 13 using a wavelength scanning-type laser light source 11, and acquire a cross-sectional image. The optical tomographic imaging device may include an object lens 23 at the focus position of the two-axis tilt mirror 22. It may deflect light in the x-axis and y-axis direction using the two-axis tilt mirror 22 and obtain a three-dimensional cross-sectional image without having distortion in the optical axis direction.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: April 8, 2014
    Assignee: Santec Corporation
    Inventor: Changho Chong
  • Publication number: 20140016182
    Abstract: A wavelength selective optical switch device includes an incidence and exit part where a signal beam made of light of a multiplicity of wavelengths enters and a signal beam of a selected wavelength exits, a wavelength dispersion element that spatially disperses a signal beam according to the wavelength thereof and multiplexes reflected light, a condensing element that condenses the light dispersed by the wavelength dispersion element onto a two-dimensional plane, and a wavelength selection element that uses a multilevel optical phased array arranged in a position to receive incident light developed on an xy-plane made of an x-axis direction and a y-axis direction perpendicular thereto developed according to a wavelength, having a multiplicity of pixels arrayed in a lattice on the xy-plane, and that cyclically changes the phase shift amount in the y-axis direction to a sawtooth wave pattern for each pixel on the x-axis.
    Type: Application
    Filed: October 1, 2012
    Publication date: January 16, 2014
    Applicant: SANTEC CORPORATION
    Inventor: Yuji Hotta
  • Patent number: 8526814
    Abstract: A multiple input/output wavelength selective switch device 1 is configured of an N×M optical cross connect switch 10, wavelength selector 20 and controller 40. The N×M optical cross connect switch 10 turns WDM signals of N channels inputted to input routes Rin1 to RinN into M WDM signals. The wavelength selector 20 can perform a selection operation with respect to each of the M WDM signals according to their wavelengths and output the signals from output routes Rout1 to RoutM.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: September 3, 2013
    Assignee: Santec Corporation
    Inventor: Noboru Uehara