Patents Assigned to Sensome SAS
  • Publication number: 20230404486
    Abstract: Embodiments described relate to a medical device including an invasive probe such as a guidewire that, when inserted into a duct (e.g. vasculature) of an animal (e.g., a human or non-human animal, including a human or non-human mammal), may be used to aid in diagnosing and/or treating a lesion of the duct (e.g. a growth or deposit within vasculature that fully or partially blocks the vasculature). The invasive probe may have one or more impedance sensors to sense characteristics of the lesion, including by detecting one or more characteristics of tissues and/or biological materials of the lesion. There is further described a method of assembling such a medical device.
    Type: Application
    Filed: February 3, 2023
    Publication date: December 21, 2023
    Applicant: Sensome SAS
    Inventors: Bruno Carreel, Edward I. Wulfman
  • Publication number: 20230352173
    Abstract: Embodiments described relate to techniques for identifying and characterizing biological structures using machine learning techniques. These techniques may be employed to enable a device to identify the particular type of tissue and/or cells (e.g., platelets, smooth muscle cells, or endothelial cells) in, for example, a biological structure, which may be a tissue or a lesion of a duct (e.g., vasculature) in an animal (e.g., a human or non-human animal), among other structures. The machine learning techniques may use raw impedance spectroscopy measurement data in addition to values derived from that raw data. In addition, the machine learning techniques may be used to select frequencies at which to measure impedance and select features to extract from the measured impedance at the selected frequencies to arrive at a small set of frequencies that allow for reliable differentiation.
    Type: Application
    Filed: December 23, 2022
    Publication date: November 2, 2023
    Applicant: Sensome SAS
    Inventors: Gor Lebedev, Pierluca Messina
  • Publication number: 20230181047
    Abstract: The invention relates to a medical device (12) comprising an electrical measurement circuit (16), in which are connected at least two variable-impedance sensors (22), the impedance of which varies according to a detected physical quantity, an electrical power source (18) for supplying power to the electrical measurement circuit (16), an antenna (18) for emitting an electromagnetic field according to the impedance of the electrical measurement circuit (16), each of the sensors (22) being associated with a switch (24) for interrupting the current supply of the sensor (22) in said measurement circuit (16), the medical device (12) additionally comprising a system (26) for controlling the switches (24) in order to successively control the opening or the closing of the switches (24), according to determined configurations. The medical device (12) may in particular be applied to the human body or implanted within the human body.
    Type: Application
    Filed: November 18, 2022
    Publication date: June 15, 2023
    Applicant: Sensome SAS
    Inventors: Franz Bozsak, Bruno Carreel, Pierluca Messina, Myline Cottance
  • Patent number: 11607174
    Abstract: Embodiments described relate to a medical device including an invasive probe such as a guidewire that, when inserted into a duct (e.g. vasculature) of an animal (e.g., a human or non-human animal, including a human or non-human mammal), may be used to aid in diagnosing and/or treating a lesion of the duct (e.g. a growth or deposit within vasculature that fully or partially blocks the vasculature). The invasive probe may have one or more impedance sensors to sense characteristics of the lesion, including by detecting one or more characteristics of tissues and/or biological materials of the lesion. There is further described a method of assembling such a medical device.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: March 21, 2023
    Assignee: Sensome SAS
    Inventors: Bruno Carreel, Edward I. Wulfman
  • Patent number: 11568990
    Abstract: Embodiments described relate to techniques for identifying and characterizing biological structures using machine learning techniques. These techniques may be employed to enable a device to identify the particular type of tissue and/or cells (e.g., platelets, smooth muscle cells, or endothelial cells) in, for example, a biological structure, which may be a tissue or a lesion of a duct (e.g., vasculature) in an animal (e.g., a human or non-human animal), among other structures. The machine learning techniques may use raw impedance spectroscopy measurement data in addition to values derived from that raw data. In addition, the machine learning techniques may be used to select frequencies at which to measure impedance and select features to extract from the measured impedance at the selected frequencies to arrive at a small set of frequencies that allow for reliable differentiation.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: January 31, 2023
    Assignee: Sensome SAS
    Inventors: Gor Lebedev, Pierluca Messina
  • Patent number: 11510577
    Abstract: The invention relates to a medical device (12) comprising an electrical measurement circuit (16), in which are connected at least two variable-impedance sensors (22), the impedance of which varies according to a detected physical quantity, an electrical power source (18) for supplying power to the electrical measurement circuit (16), an antenna (18) for emitting an electromagnetic field according to the impedance of the electrical measurement circuit (16), each of the sensors (22) being associated with a switch (24) for interrupting the current supply of the sensor (22) in said measurement circuit (16), the medical device (12) additionally comprising a system (26) for controlling the switches (24) in order to successively control the opening or the closing of the switches (24), according to determined configurations. The medical device (12) may in particular be applied to the human body or implanted within the human body.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: November 29, 2022
    Assignee: Sensome SAS
    Inventors: Franz Bozsak, Bruno Carreel, Pierluca Messina, Myline Cottance
  • Publication number: 20210174957
    Abstract: Embodiments described relate to techniques for identifying and characterizing biological structures using machine learning techniques. These techniques may be employed to enable a device to identify the particular type of tissue and/or cells (e.g., platelets, smooth muscle cells, or endothelial cells) in, for example, a biological structure, which may be a tissue or a lesion of a duct (e.g., vasculature) in an animal (e.g., a human or non-human animal), among other structures. The machine learning techniques may use raw impedance spectroscopy measurement data in addition to values derived from that raw data. In addition, the machine learning techniques may be used to select frequencies at which to measure impedance and select features to extract from the measured impedance at the selected frequencies to arrive at a small set of frequencies that allow for reliable differentiation.
    Type: Application
    Filed: November 21, 2017
    Publication date: June 10, 2021
    Applicant: Sensome SAS
    Inventors: Gor Lebedev, Pierluca Messina
  • Patent number: 10912482
    Abstract: The invention relates to a method for discriminating cells of a cellular structure, notably of a cellular tissue, comprising the steps consisting in determining (12) a frequency spectrum of the impedance of the cellular structure; defining (22) at least one model of the impedance of the cellular structure including a constant phase element (30); determining (44) the impedance of the constant phase element (30) which optimizes the correlation of each model of the impedance of the cellular structure with the spectrum; and deducing (66), from the impedance of the constant phase element (30) or from the impedances of the constant phase elements (30), an item of information on the cells of the cellular structure. The invention also relates to a system for implementing the method for discriminating cells of a cellular structure.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: February 9, 2021
    Assignee: Sensome SAS
    Inventors: Franz Bozsak, Abdul Barakat, Pierluca Messina, Olivier Francais, Bruno Carreel, Bruno Le Pioufle, Myline Cottance
  • Publication number: 20190388002
    Abstract: Embodiments described relate to a medical device including an invasive probe that, when inserted into an animal (e.g., a human or non-human animal, including a human or non-human mammal), may aid in diagnosing and/or treating a lesion of the animal (e.g., a growth or deposit within vasculature that fully or partially blocks the vasculature). The invasive probe may have one or more sensors to sense characteristics of the lesion, including by detecting one or more characteristics of tissues and/or biological materials of the lesion. The medical device may be configured to analyze the characteristics of a lesion and, based on the analysis, provide treatment recommendations to a clinician. Such treatment recommendations may include a manner in which to treat a lesion, such as which treatment to use to treat a lesion and/or a manner in which to use a treatment device.
    Type: Application
    Filed: April 11, 2017
    Publication date: December 26, 2019
    Applicant: Sensome SAS
    Inventors: Franz Bozsak, Bruno Carreel, Pierluca Messina, Myline Cottance
  • Publication number: 20190380651
    Abstract: Embodiments described relate to a medical device including an invasive probe such as a guidewire that, when inserted into a duct (e.g. vasculature) of an animal (e.g., a human or non-human animal, including a human or non-human mammal), may be used to aid in diagnosing and/or treating a lesion of the duct (e.g. a growth or deposit within vasculature that fully or partially blocks the vasculature). The invasive probe may have one or more impedance sensors to sense characteristics of the lesion, including by detecting one or more characteristics of tissues and/or biological materials of the lesion. There is further described a method of assembling such a medical device.
    Type: Application
    Filed: November 28, 2017
    Publication date: December 19, 2019
    Applicant: Sensome SAS
    Inventors: Bruno Carreel, Edward I. Wulfman
  • Publication number: 20190159684
    Abstract: The invention relates to a medical device (12) comprising an electrical measurement circuit (16), in which are connected at least two variable-impedance sensors (22), the impedance of which varies according to a detected physical quantity, an electrical power source (18) for supplying power to the electrical measurement circuit (16), an antenna (18) for emitting an electromagnetic field according to the impedance of the electrical measurement circuit (16), each of the sensors (22) being associated with a switch (24) for interrupting the current supply of the sensor (22) in said measurement circuit (16), the medical device (12) additionally comprising a system (26) for controlling the switches (24) in order to successively control the opening or the closing of the switches (24), according to determined configurations. The medical device (12) may in particular be applied to the human body or implanted within the human body.
    Type: Application
    Filed: April 5, 2017
    Publication date: May 30, 2019
    Applicant: Sensome SAS
    Inventors: Franz Bozsak, Bruno Carreel, Pierluca Messina, Myline Cottance